

22485 Medical Imaging Systems

Lecture 4: September 2024

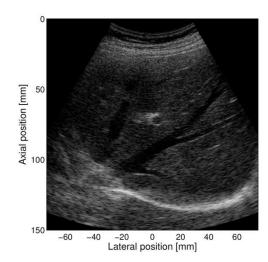
Simulation of ultrasound signals and design of arrays

Billy Y. S. Yiu Associate Professor

1

Topic of today: Ultrasound imaging with arrays and its modelling

- 1. Solution to exercise 1
- 2. Assignment from last time
- 3. Array imaging from last time
- 4. Ultrasound fields and spatial impulse responses
- 5. Design of array geometries
- 6. Questions for exercise 1 and notes for exercise 2


Reading materials: JAJ, Ch. 2, p. 36-44

Self study: CW fields, non-linear ultrasound will be explained in lecture 8

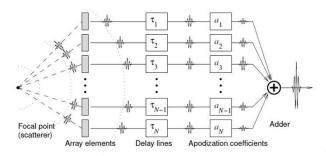
DTU Health Technology

Solution to Exercise 1

DTU Health Technology

3

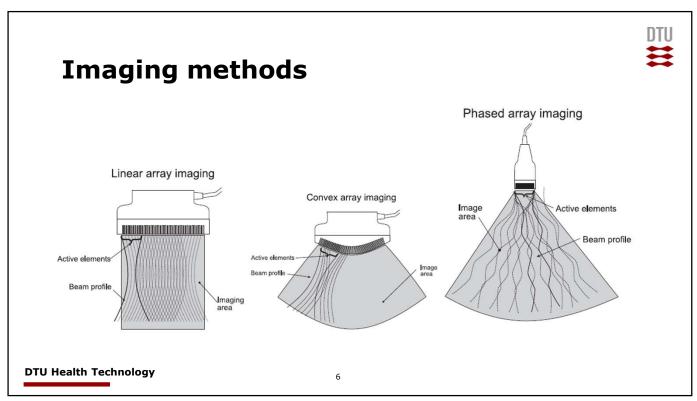
Array geometry


DTU Health Technology

- $\approx \lambda =$ w w
 $k_e = c$ eleme
 D = (R)
- d_x Element pitch. For linear array: $\approx \lambda = c/f_0$, for phased array: $\approx \lambda/2$
 - w width of element
 - $k_e = d_x w$ Kerf (gap between elements)
 - $D = (N_e-1)d_x + w$ Size of transducer
 - Commercial 7 MHz linear array:
 - Elements: Ne = 192, 64 active at the same time
 - $-\lambda = c/f_0 = 1.54/7 = 0.22$ mm
 - Pitch: $d_x = 0.208$ mm
 - Width: D = 3.9 cm
 - Height: h = 4.5mm
 - Kerf: $k_e = 0.035$ mm

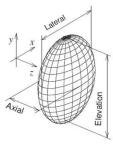
Δ

Beamforming in Modern Scanners

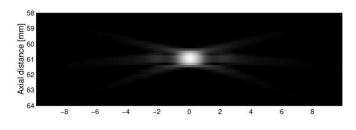

$$s(t) = \sum_{i=1}^{N_{xdc}} a_i y_i (t - \tau_i)$$

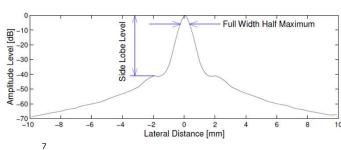
$$\tau_i = \frac{\left|\vec{r}_c - \vec{r}_f\right| - \left|\vec{r}_i - \vec{r}_f\right|}{c}$$

- *a_i* Weighting coefficient (apodization)
- yi(t) Received signal
- $\mathbf{r} = [x, y, z]^T$ Spatial position
- \mathbf{r}_i Position of the ith transducer element
- r_c Beam reference point
- r_f Focal point
- c Speed of sound


DTU Health Technology

5


PSF Characteristics



- PSF: 3-D
- B-mode images: 2-D
- Displayed on a logarithmic scale
- Maximum taken along z
- Parameters used: FWHM, side- and grating-lobe level

DTU Health Technology

7

Discussion assignment

What are the focusing delays on the array?

Parameters: 64-element array, λ pitch, all elements used in transmit

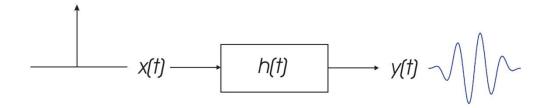
It is a 5 MHz array, so $\lambda = 1500/5e6 = 0.3$ mm

Focusing is performed directly down at the array center

- 1. Imaging depth of 1 cm: How much should the center element be delayed?
- 2. Imaging depth of 10 cm: How much should the center element be delayed?

DTU Health Technology

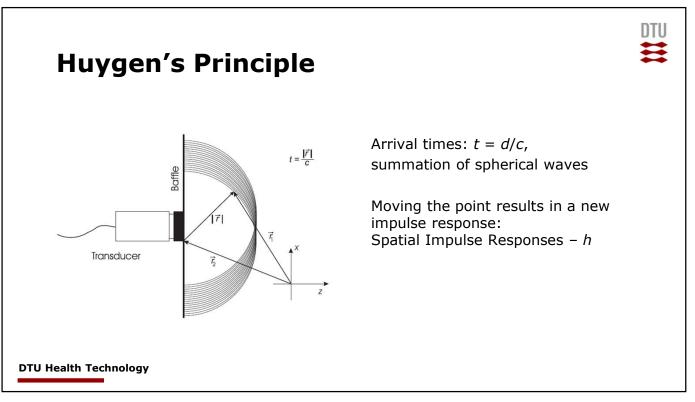
How can we calculate the ultrasound fields?


DTU Health Technology

9

9

Linear Electrical System


Fully characterized by its impulse response h(t)

DTU Health Technology

10

Linear Acoustic System Baffle Field point Impulse response at a point in space – Spatial Impulse Response – $h(\mathbf{r}, t)$ **DTU Health Technology**

11

Rayleigh's Integral

$$\frac{\partial p}{\partial x} = -\rho \frac{\partial u}{\partial t}$$

$$p(\vec{r}_1, t) = \frac{\rho 0}{2\pi} \int_{S} \frac{\frac{\partial v_n(\vec{r}_2, t - \frac{|\vec{r}_1 - \vec{r}_2|}{c})}{\partial t}}{|\vec{r}_1 - \vec{r}_2|} d^2 \vec{r}_2$$

$$= \rho_0 \frac{\partial v_n(t)}{\partial t} \int_{S} \frac{\delta(t - \frac{|\vec{r}_1 - \vec{r}_2|}{c})}{2\pi |\vec{r}_1 - \vec{r}_2|} d^2 \vec{r}_2$$

Remember that $v_n(t) * \delta(t - t_0) = v_n(t - t_0)$

 $\left| \vec{r}_1 - \vec{r}_2 \right|$ - Distance to field point

 $v_n(\vec{r}_2,t)$ - Normal velocity of transducer surface. Same vibration over surface gives: $v_n(\vec{r}_2,t)=v_n(t)$

Summation of spherical waves from each point on the aperture surface **DTU** Health Technology

13

Spatial Impulse Response:

$$h(\vec{r}_{1},t) = \int_{S} \frac{\delta(t - \frac{|\vec{r}_{1} - \vec{r}_{2}|}{c})}{2\pi |\vec{r}_{1} - \vec{r}_{2}|} dS$$

Emitted field:

$$p(\vec{r}_1, t) = \rho_0 \frac{\partial v(t)}{\partial t} * h(\vec{r}_1, t)$$

Pulse echo field:

$$v_r(\vec{r}_1, t) = v_{pe}(t) * h_{pe}(\vec{r}_1, t) = v_{pe}(t) * h_t(\vec{r}_1, t) * h_r(\vec{r}_1, t)$$

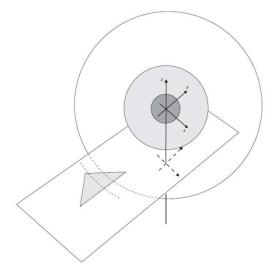
How do we calculate Spatial Impulse Responses?

DTU Health Technology

15

Acoustic Reciprocity

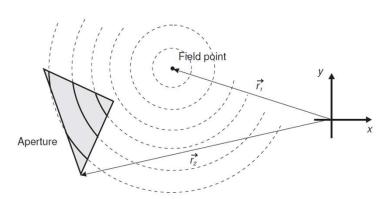
Kinsler & Frey:


"If in an unchanging environment the locations of a small source and a small receiver are interchanged, the received signal will remain the same."

In other words:

The field can be derived by emitting a spherical wave from the field point and finding the arc that intersects the aperture.

Situation


Emission of spherical wave from the field point and its intersection of the aperture

DTU Health Technology

17

Projection onto Aperture Plane

Intersection of spherical waves from the field point by the aperture, when the field point is projected onto the plane of the aperture

Calculation of Spatial Impulse Response:

Spatial impulse response:

$$h(\vec{r_1}, t) = \int_{S} \frac{\delta(t - |\vec{r_1} - \vec{r_2}|/c)}{2\pi |\vec{r_1} - \vec{r_2}|} dS$$

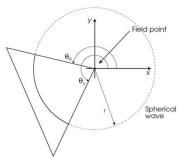
 \vec{r}_1 position of field point

 \vec{r}_2 position of field point

Converting into polar coordinate system gives

$$\iint_{S} f(x, y) dx dy = \int_{0}^{r} \int_{0}^{2\pi} r f(x, y) d\theta dr$$

Projected circles have radius: $r = \sqrt{(ct)^2 - z^2}$ z – field point's height above x-y plane


$$h(\vec{r}_1, t) = \int_0^r \int_0^{2\pi} r \frac{\delta(t - \frac{|R|}{c})}{2\pi |R|} d\theta dr$$

DTU Health Technology

19

Example:

First response arrives at t=t1=z/c, hereafter the fixed part of the circle between the angles θ_b and θ_c contributes to the response

Response is:

$$h(\vec{r}_1, t) = \int_0^r \int_{\theta_b}^{\theta_c} r \frac{\delta(t - \frac{|R|}{c})}{2\pi |R|} d\theta dr = \frac{\theta_c - \theta_b}{2\pi} \int_0^r r \frac{\delta(t - \frac{|R|}{c})}{|R|} dr$$

Spatial Impulse Response Example

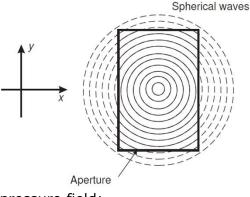
Substitution for R is: $R^2 = (z^2 + r^2)$ $dR/dr = \frac{d\sqrt{z^2 + r^2}}{dr} = \frac{1}{2\sqrt{z^2 + r^2}} 2r = r/R$ RdR = rdr Substituting this gives:

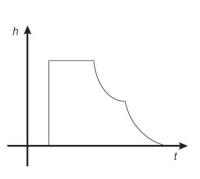
$$h_{T}(\vec{r}_{1},t) = \frac{\theta_{c} - \theta_{b}}{2\pi} \int_{z}^{\sqrt{z^{2} + r^{2}}} R \frac{\delta(t - |R|/c)}{|R|} dR = \frac{\theta_{c} - \theta_{b}}{2\pi} \int_{z}^{\sqrt{z^{2} + r^{2}}} \delta(t - |R|/c) dR$$

Time substitution R/c=t' results in (dt'/dR = 1/c, dR=cdt')

$$h_{T}(\vec{r_{1}},t) = \frac{\theta_{c} - \theta_{b}}{2\pi} c \int_{z/c}^{\sqrt{z^{2} + r^{2}}/c} \delta(t - t') dt' = \frac{\theta_{c} - \theta_{b}}{2\pi} c \int_{t_{1}}^{t_{x}} \delta(t - t') dt'$$

$$= \frac{\theta_{c} - \theta_{b}}{2\pi} c \quad \text{for } t_{1} \le t \le t_{x}$$


Time t_x equals the corresponding time for edge point closest to origo


DTU Health Technology

21

Examples of Spatial Impulse Response

Emitted pressure field:

$$p(\vec{r}_1,t) = \rho_0 \frac{\partial v(t)}{\partial t} * h(\vec{r}_1,t)$$

Computer simulation: sir_demo.m

DTU

Ultrasound Fields

Emitted pressure field:

$$p(\vec{r}_1, t) = \rho_0 \frac{\partial v(t)}{\partial t} * h(\vec{r}_1, t)$$

Pulse echo field:

$$v_r(\vec{r}_1, t) = v_{pe}(t) * f_m(\vec{r}_1) * h_{pe}(\vec{r}_1, t)$$

$$= v_{pe}(t) * f_m(\vec{r}_1) * h_t(\vec{r}_1, t) * h_r(\vec{r}_1, t)$$

$$f_m(\vec{r}_1) = \frac{\Delta \rho(\vec{r}_1)}{\rho_0} - \frac{2\Delta c(\vec{r}_1)}{c}$$

Continuous wave fields:

$$F\{p(\vec{r}_1,t)\}$$
 $F\{v_r(\vec{r}_1,t)\}$


All fields can be derived from the spatial impulse response

DTU Health Technology

23

DTU

Point Spread Functions

Point spread function for concave, focused transducer

Top: simulation Bottom: tank measurement (6 dB contour lines)

DTU Health Technology

How do we determine the array geometry?

DTU Health Technology

25

DTU

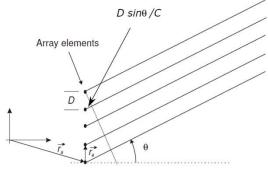
Field for Arrays

Linear medium, individual spatial impulse responses are summed:

$$h_a(\vec{r}_p, t) = \sum_{i=0}^{N-1} h_e(\vec{r}_i, \vec{r}_p, t)$$

Assume elements are very small and field point is far away from the array:

$$h_a(\vec{r}_p, t) = \frac{k_a}{R_p} \sum_{i=0}^{N-1} \delta(t - \frac{|\vec{r}_i - \vec{r}_p|}{c})$$


Note - spherical wave model can be used

 R_{p} – Distance to transducer

 k_a – Proportionality constant

Array Geometry

Geometry of linear array

If spacing between elements is D, then

$$h_a(\vec{r}_p, t) = \frac{k_a}{R_p} \sum_{i=0}^{N-1} \delta(t - \frac{\left| \vec{r}_i + iD\vec{r}_e - \vec{r}_p \right|}{c})$$

Difference in arrival time between elements far from the transducer is

$$\Delta t = \frac{D\sin\theta}{c}$$

Combined spatial impulse response is, thus, a series of Dirac pulses separated by Δt

$$h_a(\vec{r_p},t) \approx \frac{k_a}{R_p} \sum_{i=0}^{N-1} \delta(t - \frac{R_p}{c} - i\Delta t) \longleftrightarrow H_a(f)$$

DTU Health Technology

27

Useful rules

Delay rule:

$$\delta(t - iT_0) \leftrightarrow \exp(-j2\pi f \cdot iT_0) = \exp(-j2\pi f \cdot iT_0)^i$$

Power series:

$$\sum_{i=0}^{N-1} \exp(-j2\pi f \cdot iT_0)^i = \frac{\sin(\pi f T_0 N)}{\sin(\pi f T_0)} \exp(-j2\pi f (N-1) \frac{T_0}{2})$$

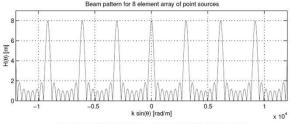
Beam Pattern

Beam pattern as a function of angle for a particular frequency is found by Fourier transforming h_a

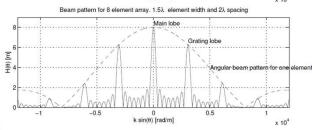
$$\begin{split} H_a(f) &= \frac{k_a}{R_p} \sum_{i=0}^{N-1} \exp(-j2\pi f(\frac{R_p}{c} + i\frac{D\sin\theta}{c})) \\ &= \exp(-j2\pi \frac{R_p}{c}) \frac{k_a}{R_p} \sum_{i=0}^{N-1} \exp\left(-j2\pi f\frac{D\sin\theta}{c}\right)^i \\ &= \frac{\sin(\pi f N D\sin\theta/c)}{\sin(\pi f D\sin\theta/c)} \exp\left(-j\pi (N-1)D\sin\theta/c\right) \frac{k_a}{R_p} \exp\left(-j2\pi f\frac{R_p}{c}\right) \end{split}$$

Amplitude of the beam profile:

$$|H_a(f)| = \left| \frac{k_a}{R_p} \frac{\sin(\pi N D/\lambda \sin \theta)}{\sin(\pi D/\lambda \sin \theta)} \right|$$


Note: correspondence to Fourier transform of digital square wave ${f DTU\ Health\ Technology}$

29


Continuous Wave Field of Point Sources Array

$$\left| H_a(f) \right| = \left| \frac{k_a}{R_p} \frac{\sin(\pi N \frac{D}{\lambda} \sin \theta)}{\sin(\pi \frac{D}{\lambda} \sin \theta)} \right| = \left| A \frac{\sin(\frac{ND}{\lambda} k \sin \theta)}{\sin(\frac{D}{\lambda} k \sin \theta)} \right| \qquad k = \frac{2\pi}{\lambda}$$

Grating lobes for array with 8 point elements (top) and of elements with a size of 1.5 λ and pitch of 2 λ

DTU He

Interpretation and Consequences

Beam profile:

$$|H_a(f)| = \left| \frac{k_a}{R_p} \frac{\sin(\pi N \frac{D}{\lambda} \sin \theta)}{\sin(\pi \frac{D}{\lambda} \sin \theta)} \right|$$

D - pitch of transducer

N - Number of elements

For linear array: D < λ

ND - Width of array

Main lobe at $\theta = 0$ or n = 0

Width from zeros at:

$$N\frac{D\sin\theta}{\lambda} = 1 \Rightarrow \theta_{w} = 2\sin^{-1}\frac{\lambda}{ND}$$

Other peak should be avoid

Poles in transfer function:

$$\frac{D\sin\theta}{\lambda} = n$$

Corresponds to peaks in the beam pattern

To avoid grating lobe:

$$\frac{D\sin\theta}{\lambda} < 1 \Rightarrow D < \frac{\lambda}{\sin\theta}$$

For phased array: D < $\lambda/2$ for safety margin for beam steering

DTU Health Technology

31

DTU

Note on Field

More information about ultrasound fields and their simulation can be found in:

Jorgen Arendt Jensen: Linear description of ultrasound imaging systems, Notes for the International Summer School on Advanced Ultrasound Imaging Technical University of Denmark, June 1 to June 5, 2015.

Can be found on the web-site under Notes.

The website for simulation can be found at:

http://field-ii.dk

DTU Health Technology

Discussion for Next Time

Design an array for cardiac imaging

Penetration depth 15 cm and 300 λ

Assume distance between ribs is maximum of 3 cm

The elevation focus should be at 8 cm

- 1. What is the element pitch?
- 2. What is the maximum number of elements in the array?
- 3. What is the lateral resolution at 7 cm?
- 4. What is the F-number for the elevation focus?

DTU Health Technology

33

Exercise 2 in Generating Ultrasound Images

Basic model:

$$r(z,x) = p(z,x) **s(z,x)$$

r(z,x) – Received voltage signal (time converted to depth using the speed of sound)

p(z,x) – 2D pulsed ultrasound field

** - 2D convolution

s(z,x) – Scatterer amplitudes (white, random)

z – Depth, x – Lateral distance

DTU

Signal Processing

- 1. Find 2D ultrasound field (load from file)
- 2. Make scatterers with cyst hole
- 3. Make 2D convolution
- 4. Find compressed envelope data
- 5. Display the image
- 6. Compare with another pulsed field

DTU Health Technology

35

Hint

Hint to make the scatterer map:

% Make the scatterer image

```
Nz = round(40/1000/dz);

Nx = round(40/1000/dx);

R = 5/1000;

e = randn(Nz, Nx);

x = ones(Nz, 1)*(-Nx/2:Nx/2-1)*dx;

z = -(Nz/2:Nz/2-1)'*ones(1,Nx)*dz;

outside = sqrt(z.^2 + x.^2) > R;

e = e.*outside;
```


Learned Today

- Calculation of fields using spatial impulse response
- Influence of physical array dimensions on fields
- Remember to design the array for next time
- Prepare your code for Exercise 2

Next time: Blood flow, Ch. 3 in JAJ, pages 45-61

DTU Health Technology