22485 Medical Imaging systems

Lecture 3: Ultrasound focusing and modeling

Jørgen Arendt Jensen Department of Health Technology Biomedical Engineering Group Technical University of Denmark

September 9, 2024

Topic of today: Imaging in ultrasound

Focusing and spatial impulse responses

- 1. Clinical study
- 2. Go through signal processing quiz
- 3. Repetition and assignment from last
- 4. Arrays and focusing using delay-and-sum
- 5. Ultrasound fields and resolution
- 6. Questions for exercise 1

Reading material: JAJ, ch. 2., p. 24-36 Self-study: CW fields

Signal processing quiz

- 1. What is the equation for the spectrum of a square wave signal with a duration of T seconds and an amplitude of a?
 - (a) At what frequency is the first zero in the spectrum?
 - (b) What is the amplitude of the spectrum at a frequency of 0 Hz?
- 2. What is the spectrum of a tone pulse given by: $g(t) = a(t) \sin(2\pi f 0t)$, where a(t) = 1 for 0 < t < M/f 0 and zero elsewhere.
- 3. Make a sketch of the amplitude spectrum of an M cycle sinus pulse with a frequency of f_0 .
- 4. What is the autocorrelation function of a stochastic, white signal? $$_{\rm 3}$$

```
5. Make a drawing of the output from the following Matlab program:
```

```
M=4;
f0=5e6;
T=M/f0;
fs=8*f0;
pulse=2*sin(2*pi*f0*(0:1/fs:T));
plot(pulse)
```

6. A signal is generated by y(n) = h(n) * e(n), where h(n) is the impulse response of a filter and e(n) is a stochastic, white signal. Express the autocorrelation function of y(n) from the autocorrelation functions $R_h(k)$ of h(n) and $R_e(k)$ of e(n).

From last lecture: The wave equation

Speed of sound c:

$$c=\sqrt{\frac{1}{\rho\kappa}}$$

Linear wave equation:

$$\frac{\partial^2 p}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} = 0$$

General solutions:

$$p(t,x) = g(t \pm \frac{x}{c})$$

 $\frac{x}{c}$ is time delay

Attenuation of ultrasound

	Attenuation
Tissue	dB/[MHz⋅cm]
Liver	0.6 - 0.9
Kidney	0.8 - 1.0
Spleen	0.5 - 1.0
Fat	1.0 - 2.0
Blood	0.17 - 0.24
Plasma	0.01
Bone	16.0 - 23.0

Approximate attenuation values for tissue penetrated for human tissue

Pulse-echo: depth of 10 cm, $f_0 = 5$ MHz, attenuation 0.7 dB/[MHz·cm]:

Attenuation: $2 \cdot 10 \cdot 5 \cdot 0.7 = 70 \text{ dB}$

6

Amplitude attenuation transfer function for a plane wave

$$|H(f;z)| = \exp(-(\beta_0 z + \beta_1 f z)),$$
(1)

 \boldsymbol{z} - depth in tissue

f - frequency

 β_0 - frequency-independent attenuation

 β_1 - frequency-dependent term expressed in Np/[MHz·cm] (Np - Nepers)

Converted to Nepers by dividing with 8.6859

0.7 dB/[MHz·cm] is 0.0806 Np/[MHz·cm].

Frequency dependent term is the major source of attenuation

Frequency independent term is often left out.

Effect of attenuation

Down-shift in center frequency: $f_{mean} = f_0 - (\beta_1 B_r^2 f_0^2) z$

- f_0 Center frequency of transducer
- $c \quad {\rm Speed \ of \ sound} \\$
- v Blood velocity
- β_1 Frequency dependent attenuation
- B_r Relative bandwidth of pulse

8

FDA safety limits

	$I_{spta.3}$ mW/cm ²		$I_{sppa.3}$ W/cm ²		I_m W/cm ²		MI
Use	In Situ	Water	In Situ	Water	In Situ	Water	
Cardiac	430	730	190	240	160	600	1.90
Peripheral vessel	720	1500	190	240	160	600	1.90
Ophthalmic	17	68	28	110	50	200	0.23
Fetal imaging (a)	94	170	190	240	160	600	1.90

Highest known acoustic field emissions for commercial scanners as stated by the United States FDA (The use marked (a) also includes intensities for abdominal, intra-operative, pediatric, and small organ (breast, thyroid, testes, neonatal cephalic, and adult cephalic) scanning) from the the September 9, 2008, FDA Guidance.

Discussion from last

Use the ultrasound system from the first discussion assignment

- 1. What is the largest pressure tolerated for cardiac imaging?
- 2. What displacement will this give rise to in tissue?

Discussion assignment from last time

B-mode system, 10 cm penetration, 300 λ

Frequency 4.5 MHz, one cycle emission.

Plane wave with an intensity of 730 mW/cm^2 (cardiac, water)

$$z = 1.48 \cdot 10^{6} \text{ kg/[m}^{2} \text{ s]}$$

Pulse emitted: $f_0 = 4.5$ MHz, M = 1 period, $f_{prf} = 7.5$ kHz, $T_{prf} = 133 \mu s$ Pressure emitted:

$$I_{spta} = \frac{1}{T_{prf}} \int_{0}^{M/f_{0}} I_{i}(t, \vec{r}) dt = \frac{M/f_{0}}{T_{prf}} \frac{P_{0}^{2}}{2z}$$

$$p_{0} = \sqrt{\frac{I_{spta} 2zT_{prf}}{M/f_{0}}} = \sqrt{\frac{0.730 \cdot 10^{4} \cdot 2 \cdot 1.48 \cdot 10^{6} \cdot 133 \cdot 10^{-6}}{1/4.5 \cdot 10^{6}}} = 3.60 \cdot 10^{6} \text{ Pa} = 36.0 \text{ atm}$$

The normal atmospheric pressure is 100 kPa.

Example continued

<u>The particle velocity</u> is $U_0 = \frac{p_0}{Z} = \frac{3.60 \cdot 10^6}{1.48 \cdot 10^6} = 2.43$ m/s.

The particle velocity is the derivative of the particle displacement, so

$$z(t) = \int U_0 \sin(\omega_0 t - kz) dt = \frac{U_0}{\omega_0} \cos(\omega_0 t - kz).$$

The displacement is

$$z_0 = U_0/\omega_0 = 2.43/(2\pi \cdot 4.5 \cdot 10^6) = 86$$
 nm.

1	0
Ŧ	2
_	_

How do we use ultrasound arrays?

Ultrasound imaging using arrays

- Multi-element transducer arrays are used: – Linear arrays - element width $\approx \lambda$ – Phased arrays - element width $\approx \lambda/2$
- 1. Focused transmit by applying different delays on elements
- 2. Field propagates along beam direction. Echoes scattered back.
- Received signals are delayed and summed (beamformed). Delays change as a function of time (dynamic delays).
- 4. The same process is repeated for another image direction.

Focusing and beamforming

Electronic focusing

(a)

22222222

Transduce

Excitation pulses

Time from the center of element to field point:

$$t_i = \frac{1}{c} \sqrt{|\vec{r_i} - \vec{r_f}|^2}$$

 $ec{r_f}$ - position of the focal point

 $ec{r_i}$ - center of physical element number i

Reference point on aperture (defines time t = 0):

$$t_c = \frac{1}{c} \sqrt{|\vec{r_c} - \vec{r_f}|^2}$$

 $\vec{r_c}$ - reference center point on the aperture.

Delay to use on each element of the array:

Beam shape

Beam steering and focusing

(b)

>2222222 Excitation pulses

Transducer

$$\Delta t_i = \frac{1}{c} \left(\sqrt{|\vec{r_c} - \vec{r_f}|^2} - \sqrt{|\vec{r_i} - \vec{r_f}|^2} \right)$$

System Characterization

A system can be characterized by the *point-spread-function* (PSF). The point spread function is:

$$\mathbf{p}(\vec{x},t) = v_{pe}(t) * h_{pe}(\vec{r},t).$$

Examples of PSF without apodization:

- A one focal zone
- B 6 receive focal zones
- C 6 xmt and rcv zones
- D 128 elem, 4 xmt zones, 7 rcv zones
- E 128 elem, 4 xmt zones, dynamic rcv
- F 128 elem, xmt $F_{\#} = 4$, rcv $F_{\#} = 2$

Lateral distance [mm]

22

Sidelobe Reduction С D 10 The sidelobes can be improved 20 by applying apodization. 30 Examples of PSF with apodiza-40 tion: 50 Axial distance [mm] 60 • A - one focal zone • B - 6 receive focal zones 70 • C - 6 xmt and rcv zones 80 • D - 128 elem, 4 xmt zones, 7 rcv zones 90 • E - 128 elem, 4 xmt zones, 100 dynamic rcv 110 • F - 128 elem, xmt $F_{\#} = 4$, rcv $F_{\#} = 2$ 120 -10 0 10 Lateral distance [mm]

Rayleigh's Integral

$$p(\vec{r_1}, t) = \frac{\rho_0}{2\pi} \int_S \frac{\frac{\partial v_n(\vec{r_2}, t - \frac{|\vec{r_1} - \vec{r_2}|}{c})}{\frac{\partial t}{|\vec{r_1} - \vec{r_2}|}} d^2 \vec{r_2}$$

$$|\vec{r_1} - \vec{r_2}|$$
 - Distance to field point $v_n(\vec{r_2},t)$ - Normal velocity of transducer surface

Summation of spherical waves from each point on the aperture surface

Spatial impulse response:

$$h(\vec{r_1}, t) = \int_S \frac{\delta(t - \frac{|\vec{r_1} - \vec{r_2}|}{c})}{2\pi |\vec{r_1} - \vec{r_2}|} dS$$

Emitted field:

$$p(\vec{r}_1, t) = \rho_0 \frac{\partial v(t)}{\partial t} * h(\vec{r}_1, t)$$

Pulse echo field:

$$v_r(\vec{r}_1, t) = v_{pe}(t) * h_{pe}(\vec{r}_1, t) = v_{pe}(t) * h_t(\vec{r}_1, t) * h_r(\vec{r}_1, t)$$

Ultrasound fields

Emitted field:

$$p(\vec{r}_1, t) = \rho_0 \frac{\partial v(t)}{\partial t} * h(\vec{r}_1, t)$$

Pulse echo field:

$$v_r(\vec{r}_1, t) = v_{pe}(t) * f_m(\vec{r}_1) * h_{pe}(\vec{r}_1, t)$$

= $v_{pe}(t) * f_m(\vec{r}_1) * h_t(\vec{r}_1, t) * h_r(\vec{r}_1, t)$
$$f_m(\vec{r}_1) = \frac{\Delta \rho(\vec{r}_1)}{\rho_0} - \frac{2\Delta c(\vec{r}_1)}{c}$$

Continuous wave fields:

$$\mathcal{F}\left\{p(\vec{r}_1,t)\right\},\qquad \mathcal{F}\left\{v_r(\vec{r}_1,t)\right\}$$

All fields can be derived from the spatial impulse response.

Discussion for next time

What are the focusing delays on an array.

Parameters: 64 element array, 5 MHz center frequency, λ pitch, all elements used in transmit

Focusing is performed directly down at the array center.

- 1. Imaging depth of 1 cm: How much should the center element be delayed?
- 2. Imaging depth of 10 cm: How much should the center element be delayed?

Learned today

- Focusing of arrays using delay-and-sum beamforming
- Point spread functions
- Calculation of fields using spatial impulse response

Next time: Ch. 2 in JAJ, pages 36-44 on array geometries and their design

<text><image><text>

Signal processing

- 1. Acquire RF data (load from file)
- 2. Perform Hilbert transform to find envelope: $env(n) = |y(n)^2 + \mathcal{H}\{y(n)\}^2|$
- 3. Compress the dynamic range to 60 dB: $\log_{env}(n) = 20 \log_{10}(env(n))$
- 4. Scale to the color map range (128 gray levels)
- 5. Make polar to rectangular mapping and interpolation
- 6. Display the image
- 7. Load a number of clinical images and make a movie

Polar to rectangular mapping and interpolation 1

Two step procedure to set-up tables and then perform the interpolation.

Table setup:

```
% Function for calculating the different weight tables
%
    for the interpolation. The tables are calculated according
%
    to the parameters in this function and are stored in
%
    the internal C-code.
%
% Input parameters:
% start_depth
% image_size
% start_of_dat
% delta_r
% N_samples
% theta_start
% delta theta
                               - Depth for start of image in meters
            start_depth
                               - Size of image in meters
            start_of_data - Depth for start of data in meters
                             - Sampling interval for data in meters
- Number of samples in one envelope line
            theta_start - Angle for first line in image
                             - Angle between individual lines
- Number of acquired lines
%
            delta_theta
%
            N_lines
```

```
36
```

```
%
%
         scaling
                         - Scaling factor from envelope to image
%
         Nz
                         - Size of image in pixels
%
         Nx
                         - Size of image in pixels
%
%
   Output: Nothing, everything is stored in the C program
%
%
  Calling: make_tables (start_depth, image_size,
                                                                 . . .
%
%
                          start_of_data, delta_r, N_samples,
                                                                 . . .
                          theta_start, delta_theta, N_lines,
                                                                 . . .
%
                          scaling, Nz, Nx);
%
%
  Version 1.1, 11/9-2001, JAJ: Help text corrected
```


Polar to rectangular mapping and interpolation 2 Perform the actual interpolation: % Function for making the interpolation of an ultrasound image. % The routine make_tables must have been called previously.

% Input parameters: % envelope_data - The envelope detected and log-compressed data % as an integer array as 32 bits values (uint32) % Output: img_data - The final image as 32 bits values % Calling: img_data = make_interpolation (envelope_data);

Useful Matlab commands Loading of files: load (['in_vivo_data/8820e_B_mode_invivo_frame_no_',num2str(j)]) Making a movie: for j=1:66 image(randn(20)) colormap(gray(256)) axis image F(j)=getframe; end % Play the movie 5 times at 22 fr/s movie(F,5, 22)