

Outline for Today

- Teachers
- · Outline of course
 - Purpose
 - Course content and web-site
 - Books and notes
 - Exercises
- Medical ultrasound systems
 - History
 - Anatomic imaging
 - Blood flow imaging
 - Examples
- Physics of ultrasound after break

DTU

,

DTU

Practical details

Practical details – Teacher for lectures

- Jørgen Arendt Jensen
- DTU Health Technology
- Build 349, room 222
- Phone: 45 25 39 24
- E-mail: jaje@dtu.dk
- Web:

home.healthtech.dtu.dk/iai/

• Responsible for all practical details

3

Practical details – Teacher for lectures

Billy Yiu

• DTU Health Technology

• Build 349, room 232

• E-mail: yshyi@dtu.dk

 Handles part of the ultrasound, exercises and assignments Teacher for the MR part

• Hans Magnus Henrik Lundell

• DTU Health Technology

• Build 349, first floor

• E-mail: hmag@dtu.dk

5

_

Guest lecturers

- Chief physicist, Cand.scient Søren Holm,
 Klinisk fysiologisk og nuklearmedicinsk klinik Rigshospitalet
- Professor, dr.med. Liselotte Højgaard,
 Klinisk fysiologisk og nuklearmedicinsk klinik Rigshospitalet
- Senior researcher, PhD Jakob Sauer Jørgensen, DTU Compute
- Senior Research Officer Carsten Gundlach, Department of Physics, DTU
- PhD, MD Thomas Kristensen,
 Diagnostisk Center, Radiologisk klinik afsnit 2023, Rigshospitalet
- Associate professor, PhD Borislav Tomov, DTU Health Technology
- PhD student, MD Nathalie Panduro, Rigshospitalet, Radiologisk Afdeling

Practical details – Teachers for exercises

DTU

- PostDoc Lasse Thurmann Jørgensen
- DTU Health Technology
- Build 349, room 208
- E-mail: latjo@dtu.dk

Practical details – Teachers for exercises

- · PostDoc Lars Emil Haslund
- DTU Health Technology
- Build 349, room 224
- Phone: 45 25 39 02
- E-mail: lahas@dtu.dk

The purpose of the course is ...

- to obtain a thorough understanding of diagnostic imaging systems
- to give an understanding of the relation between different medical imaging systems and other measurement systems
- to relate the physical measurement situation with the applied signal processing
- to give an understanding for "good" (robust/accurate/sensitive) measurement and processing methods
- to give an active knowledge of the signal and image processing in modern imaging systems through exercises and project assignments.

Prerequisites for following the course

10

- Assumes that the curriculum in Medicine & Technology has been followed:
 - 22052/31610 Applied signal processing
 - 22481/31540 Introduction to medical imaging
 - Courses in human anatomy and physiology
 - Capable of programming in Matlab
 - Interest in Medical Imaging!

Teaching paradigm

- Discussion of reading material each Monday (13-15) in aud. 23, build. 341 and Thursday (9-11) aud. 11, build. 308
 - Discussion of Chapter and

Cold-call

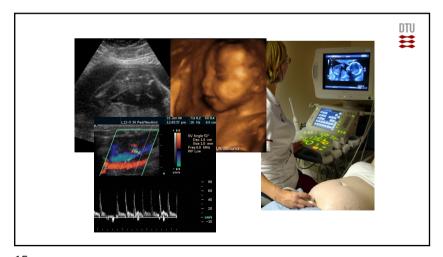
- Discussion assignment of the day
- Questions
- Slides to support discussion
- Small assignments
- Matlab demonstration
- Exercises some Mondays (15-17) in E-data bar build. 341 room 015 (check plan)
- Two final assignments with hand-in of reports. Oral exam about the reports, exercises, and reading material (everything counts!)

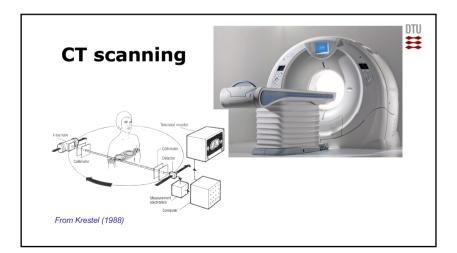
12/x

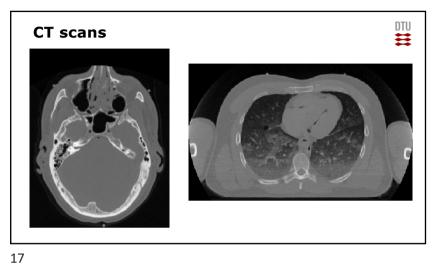
Web-site and course plan

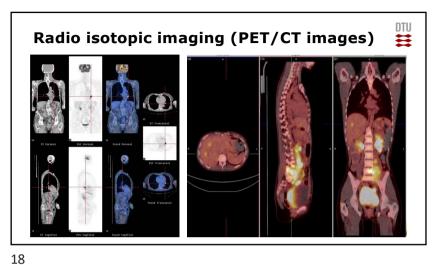
Web-site at:

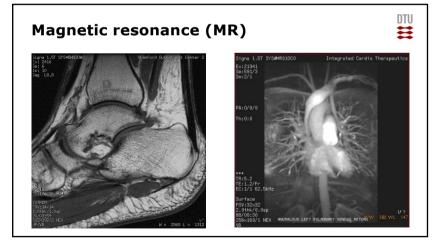
courses.healthtech.dtu.dk/22485/


- Course plan in 4 themes:
 - Ultrasound imaging
 - X-ray and computer tomography (CT)
 - Radio isotopic imaging (PET, PET/CT, SPECT)
 - Magnetic resonance (MR)
- Slides are posted roughly 1 hour or less before the lecture
- All data and exercises can be found on the web site and on DTU Learn




Modern Medical Imaging Systems


DTU

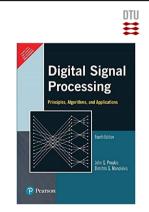

13 14

DTU **Books** • Two books are used: Jørgen Arendt Jensen: Estimation of Blood Velocities Using Ultrasound, A Signal Processing Approach, Cambridge University Press, 1996. (third edition August, 2013 can be downloaded from DTU Learn. Note this is copyrighted material; For your Eyes only!) - P+L: J. L. Prince & J. M. Links: Medical imaging signals and systems (second edition), Pearson Prentice Hall Bioengineering, 2015, ISBN: 978-0-13-214518-3 It can be bought from the PF bookstore with a discount. Is used from October 6.

Exercises

- Seven exercises are made during the course
- Topics: Matlab programs for simulating the signal and image processing in medical imaging.
- Time: Monday 15-17 in the E-data bar, build. 341, ground floor room 015
- Made in groups of two (form groups today and Thursday)
- No reports hand-in, but you can be asked questions about it at the exam
- Lays the ground work for the two projects
- Prepare for the exercises!
- Tutors: Lasse Thurmann Jørgensen and Lars Emil Haslund

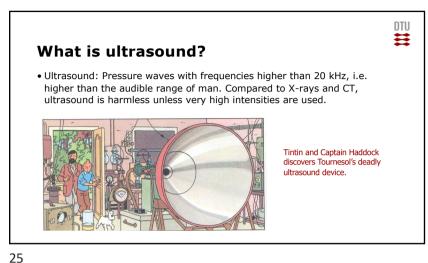
Final assignments


- Two assignments are made:
 - 1. Ultrasound signal processing (hand in 28/10)
 - 2. Reconstruction and artefacts (hand in 5/12)
- Made in groups of two
- Evaluated with a grade that counts towards the final grade
- Hand-in time is strict
- Hand in as pdf and Urkund is used for plagiarism check

21 22

Quiz on signal processing next time

Topics:


- What is the spectrum of a square wave?
- Basic rules for signals and correlation functions
- What is the spectrum of a sinusoidal pulse with M oscillations
 - · Sketch the signal
 - Sketch the spectrum
- What is the autocorrelation of a white, random signal?
- How do you plot in Matlab
- · Takes 15 min and we will discuss it next time Monday

Medical Ultrasound: History and Systems

23

--

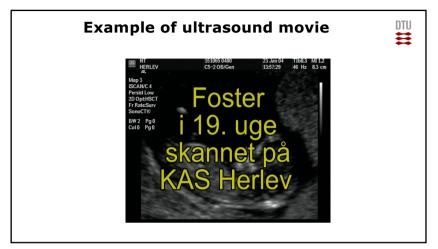
Ultrasound history • Used for many years by animals - bats and

• Piezoelectric effect discovered by the Curie brothers in 1888

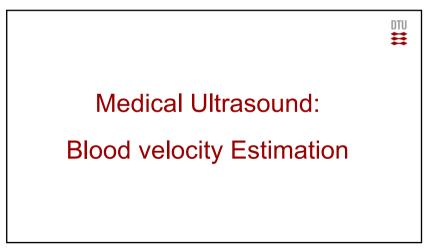
• High frequency pressure waves in water (SONAR) was developed after World War I to detect submarines.

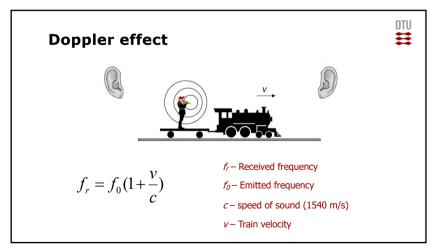
• The first ultrasound systems for medical imaging was made in the 1950s, mainly by Howry and

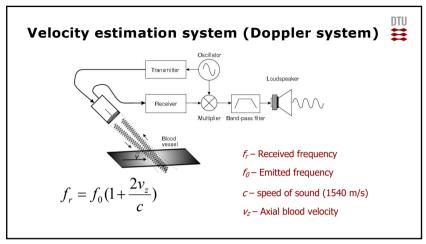

• The first velocity estimation system by Satomura in Japan, 1957



26




 \blacksquare Modern ultrasound system • Speed of sound: 1540 m/s \bullet Time for one line is 200 μs for a depth of 15 cm • Can yield 5,000 lines per second • One image consists of 100-200 lines • Frame rate is 10-50 images/s • Electronic arrays transducers with 192 elements are used Modern ultrasound scanner from B-K Medical

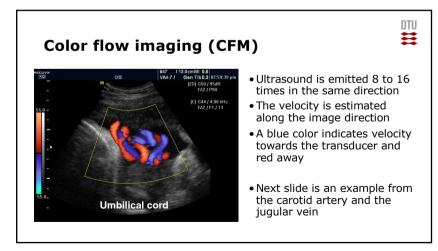


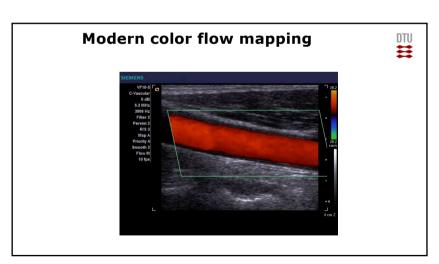
29 30

Audio generation

• Received and demodulated frequency is in the audio range:

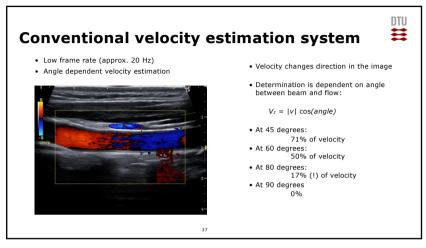
-Emitted frequency: 3-10 MHz

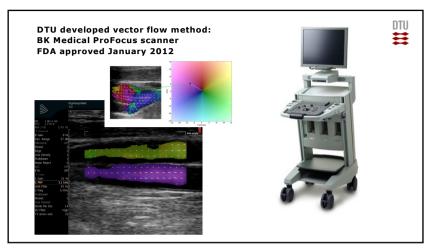

-Blood velocity: 0-1 m/s

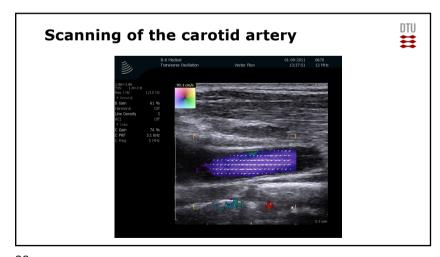

-Resulting frequency example:

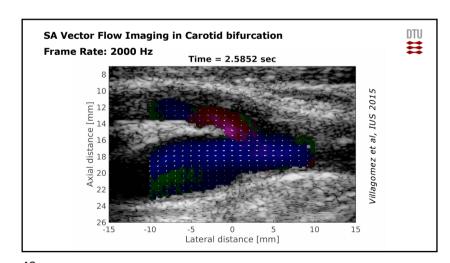
• Matlab example (snd_demo)

$$f_{doppler} = \frac{2v_z}{c} f_0 = \frac{2 \cdot 0.75}{1540} \cdot 5 \cdot 10^6 = 5 \text{ kHz}$$


33






35

DTU

Medical Ultrasound: Physics

Ultrasound and scanning

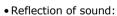
- Pulse emission
- Speed of sound *c*=1540 m/s in soft tissue
- Distance in tissue: $d = c \cdot t$
- Pulse send out:

$$p(t) = \sin(2\pi f_o t) \quad 0 \le t \le \frac{M}{f_o}$$

• Wavelength:

$$T_0 = \frac{1}{f_o}, \quad \lambda = T_o c = \frac{c}{f_o}$$

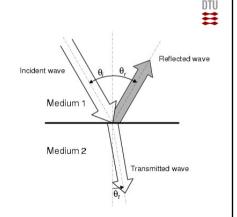
- Length of pulse = $M \lambda$
- Typical parameters:


$$f_0 = 5$$
MHz, $\lambda = \frac{1540}{5 \cdot 10^6} = 0.3$ mm

 $M=2\Rightarrow M\lambda\approx 0.6mm$

41

42


Reflection

$$R_a = \frac{z_2 \cos \Theta_i - z_1 \cos \Theta_t}{z_2 \cos \Theta_i + z_1 \cos \Theta_t} = \frac{p_r}{p_i}$$

- Characteristic acoustic impedance: $z = \rho c$
- Snell's law: $\frac{c_1}{c_2} = \frac{\sin \Theta_i}{\sin \Theta_t}$
- Transmission of sound:

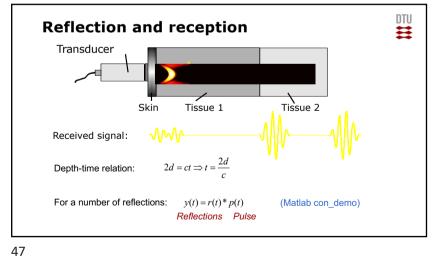
$$T_a = \frac{2z_2 \cos \Theta_i}{z_2 \cos \Theta_i + z_1 \cos \Theta_i} = \frac{p_t}{p_i}$$

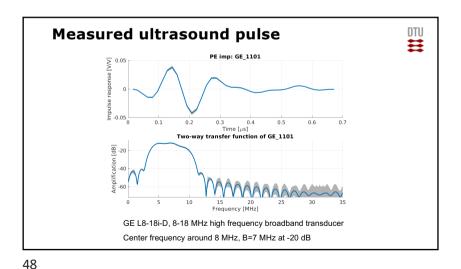
Table with characteristic acoustic impedances

DTU

		Speed of	Characteristic
Medium	Density	sound	acoustic impedance
	kg/m ³	m/s	kg/[m ² ·s]
Air	1.2	333	0.4×10^{3}
Blood	1.06×10^{3}	1566	1.66×10^{6}
Bone	$1.38 - 1.81 \times 10^3$	2070 - 5350	$3.75 - 7.38 \times 10^6$
Brain	1.03×10^{3}	1505 - 1612	$1.55 - 1.66 \times 10^6$
Fat	0.92×10^{3}	1446	1.33×10^{6}
Kidney	1.04×10^{3}	1567	1.62×10^{6}
Lung	0.40×10^{3}	650	0.26×10^{6}
Liver	1.06×10^{3}	1566	1.66×10^{6}
Muscle	1.07×10^{3}	1542 - 1626	$1.65 - 1.74 \times 10^{6}$
Spleen	1.06×10^{3}	1566	1.66×10^{6}
Distilled water	1.00×10^{3}	1480	1.48×10^{6}

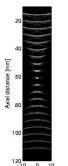
What are the reflection coefficients?




• For normal incidence ($\Theta_i = 0 = \Theta_t$)

$$R_a = \frac{z_2 \cos \Theta_i - z_1 \cos \Theta_t}{z_2 \cos \Theta_i + z_1 \cos \Theta_t} = \frac{p_r}{p_i} = \frac{1 - \frac{z_1}{z_2}}{1 + \frac{z_1}{z_2}}$$

- Liver to fat?
- Bone to fat?
- Fat to air?
- Use the previous table to calculate the values.


DTU What are the reflection coefficients? $z_1 = 1.66 \text{ MRayl}, z_2 = 1.33 \text{ MRayl},$ • Liver to fat? Bone to fat? $z_1 = 7.38 \text{ MRayl}, z_2 = 1.33 \text{ MRayl},$ $z_1 = 1.33 \text{ MRayl}, z_2 = 0.4 \text{ kRayl},$ • Fat to air?

Resolution and point spread functions

Lateral distance [mm]

- Resolution in the image is characterized by the point spread function (PSF)
- Spatially variant
- Axial resolution in depth
- Lateral resolution across ultrasound beam
- Azimuth out of image plane
- Image model:

$$y(t) = r(t, \vec{r}) **p(t, \vec{r})$$

- ** 3D (spatial) convolution
- -r Reflections
- -p Point spread function

Axial resolution

- Pulse emission
- •Speed of sound c=1540 m/s in soft tissue

Distance in tissue:

 $z = c \cdot t / 2$

 $\bullet \text{Pulse send out:} \\$

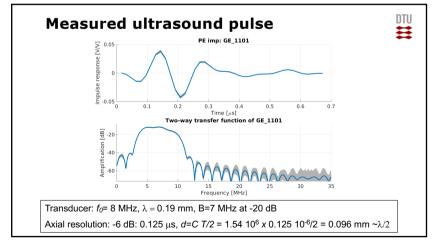
 $p(t) = \sin(2\pi f_o t) \quad 0 \le t \le \frac{M}{f_0}$

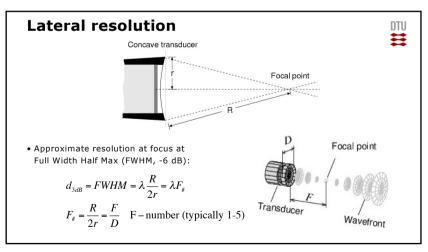
Axial resolution:

 $\frac{M}{f_0}\frac{c}{2} = \frac{M}{2}\lambda$

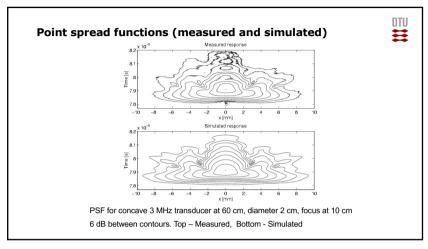
•Transducer bandwidth = f_0/M

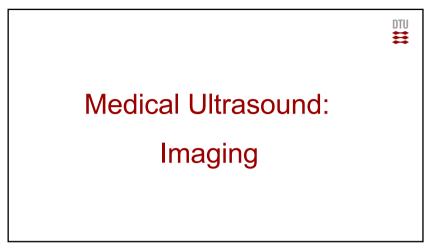
Typical parameters:

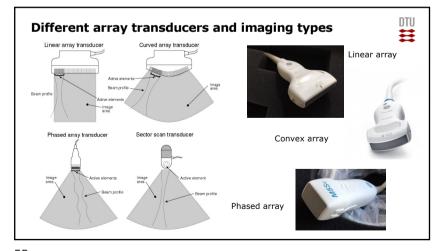

 $f_0 = 5$ MHz, $\lambda = \frac{1540}{5 \cdot 10^6} = 0.3$ mm

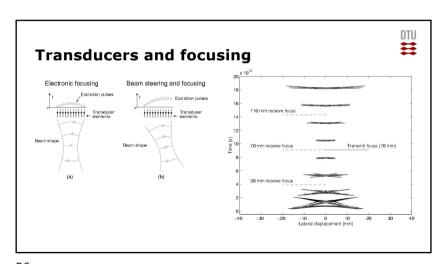

 $M = 2 \Rightarrow res \approx 0.3$ mm

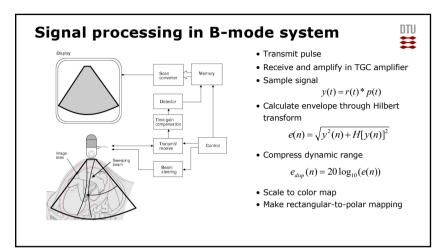
$$T = \frac{M}{f_0} = \frac{2}{5 \cdot 10^6} = 0.4 \,\mu\text{s}$$

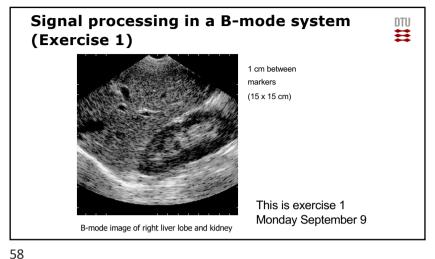

49


50






51



Discussion assignment for Thursday

• Design an ultrasound B-mode system

57

- Assume that a system can penetrate 300 wavelengths
- It should penetrate down to 10 cm in a liver
 - What is the largest pulse repetition frequency possible?
 - What is the highest possible transducer center frequency?
 - What is the axial resolution?
 - What is the lateral resolution for an F-number of 2?

· History of ultrasound Basic ultrasound · Content of exercise 1 · For next time - Make the discussion assignment - We will discuss Chapter 2 scattering - Next discussion Thursday, 9-12 on these topics

Summary of today

- · Practical details of course
 - Download and print book from DTU Learn
 - Read chapter 1 and 2, page 1-24 and look at your signal processing books remember quiz questions
 - What are the key parameters of ultrasound?
 - Ultrasound propagation, intensity, reflection, and

 - Read and prepare questions and discussion for exercise 1
 - Prepare for signal processing quiz

59 60