22485 Medical imaging systems

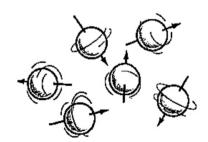
Magnetic Resonance Imaging

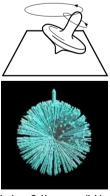
Henrik Lundell

Associate Professor, MR Section DTU Senior Researcher, DRCMR, Hvidovre Hospital hmaq@dtu.dk

 ${\it Module~E2,~Monday~kl.~13.00-14.30~in~building~349,~room~205} \\ {\it and~Thursday~kl.~9.00-11.00,~in~building~349,~room~205} \\$

MRI Teaching material


- Lecture notes by Lars G. Hanson (47 pages) available in English and Danish. (Link in course plan). Today: sections 11-16
- Chapter 12 and 13 in Prince and Links. Today: Ch 13
- · Matlab exercise on November 27


Errata

 The unit for the proton gyromagnetic ration should be MHz/T on slide 15 in lecture 1!

Precession and excitation

$$f = \gamma \cdot B_0$$
 $\gamma = 42 \,\, \mathrm{MHz/T}$ (For protons/hydrogen 1H)

Animation by Lars G. Hanson available online https://www.drcmr.dk/mr

Overall MRI topics

- The basic hardware components of an MRI system
- · Nuclear spins and precession
- RF-pulses (B1-field), magnetic resonance and relaxation
- · 2. Signal preparation, sequences and contrast mechanisms
- · 1. Magnetic field gradients, slice selection, and phase and frequency encoding
- · 3. The k-space and image reconstruction
- Image reconstruction (exercise)
- · Advanced and emerging MRI methods and applications
- · MRI safety

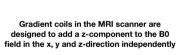
Can my shoe size be measured by any of these instruments?

Coyne, 2012

For sale (5000 DKK) w.dba.dk/piano-andet-maei id-1099125080/hilleder/1/

Today's Intended Learning Objectives

- Identify main hardware components of an MRI scanner and their role.
- Understand the role of the gradient system and how it relates to slice selection, frequency and phase encoding.
- Explain dephasing mechanisms resulting in the T2* relaxation and how the T2 relaxation is isolated with the spin echo effect.
- Understand the relation between


anti-Helmholtz pair in Z direction

Double saddle coils in X and Y direcitons

Illustration by Hornak

The added gradient field modulate the resonance frequency at different positions along the gradient.

$$f = \gamma \cdot (B_0 + \mathbf{Gr})$$

Gradients

anti-Helmholtz pair in Z direction

Gradient coils in the MRI scanner are designed to add a z-component to the B0 field in the x, y and z-direction independently

Double saddle coils in X and Y direcitons

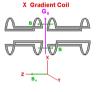
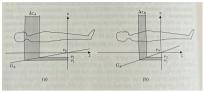


Illustration by Hornak: https://www.cis.rit.edu/htbooks/mri/chap-9/chap-9-h5.htm The added gradient field modulate the resonance frequency at different positions along the gradient.

$$f = \gamma \cdot (B_0 + \mathbf{Gr})$$


Recap: Relaxation

- Longitudinal relaxation T1: Restores polarisation of the spin ensemble with the net magnetisation along the stationary B0-field
- Transverse relaxation T2*: Dephasing of precessing spins after excitation with a B1-pulse. Both due to microscopic interactions (T2 irreversible) and macroscopic field inhomogeneities (T2' reversible through a spin echo). T2*=1/T2'+1/T2
- The relaxation times are different for different materials/tissues and images highlighting different tissue properties can be explored through different signal preparations in imaging sequences.

Gradients

 Gradients can be used to excite an arbitrary oriented plane

matching the frequency and bandwidth of a B1-field to the desired location and thickness of a slice.

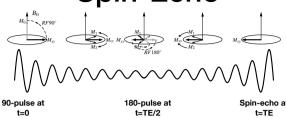
From Links and Price

2. Gradients can be used to modulate the received signal

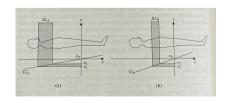
$$f = \gamma \cdot (B_0 + G_x x)$$

 \mathbf{G}_{r}

Frequency encoding - the modulation of precession frequency during a gradient


Phase encoding - the modulation of precession phase after an applied gradient

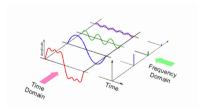
Exercise I


- Go to https://www.drcmr.dk/BlochSimulator/ (best on laptop)
- Try out the different B1-pulse buttons (90/180 deg hard/soft). You can switch
 between the stationary and rotating frame perspective with the XYZ option to the
 right.
- Go to the equilibrium setting and set to inhomogeneity.
- · Excite the spins and observe the signal. What is happening?
- Try the spoil button (this is a short strong gradient field). What is happening?
- Try again and apply a 180-pulse some time after the 90-pulse. What is happening?

Spin-Echo

- Spins experiencing slightly different B0 fields and precess at different frequencies leading to T2'decay.
- A 180-pulse will reverse the phase such that slow spins get ahead of the average and fast spins
 gets behind. Rephasing will occur at the echo time TE leading to a recovery of the T2' part of T2*
- Spin interactions that lead to random dephasing (collisions, diffusion...) leads to additional dephasing that leads to an additional T2-effect that is isolated in the spin echo signal.

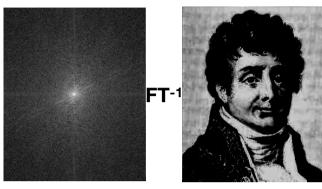
Making images

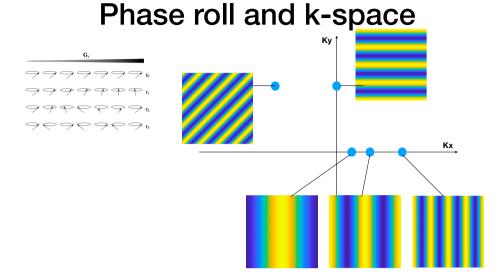


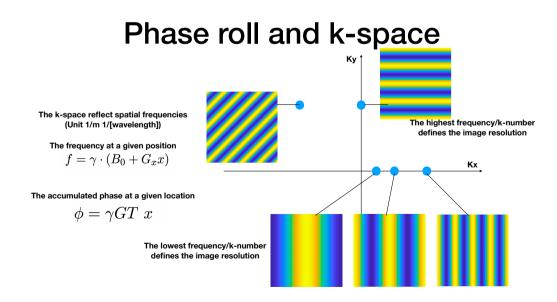
Contrast weighting and sequences

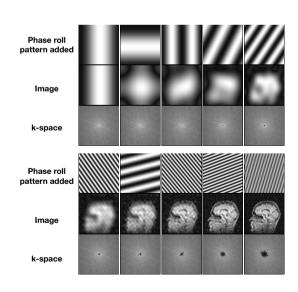
- Proton density (maximize signal from all materials) by short TE and long TR.
- T1-weighting by modulation of TR (repetition time) or IT (inversion time) with an inversion preparation (simulator).
- T2* and T2-weighting by modulating TE (echo time) in gradient echo (excite and aquire) or spin echo (excite, 180-pulse, aquire).

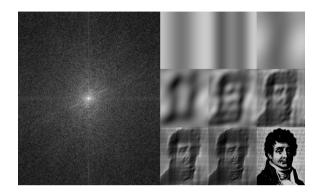
Fourier transform

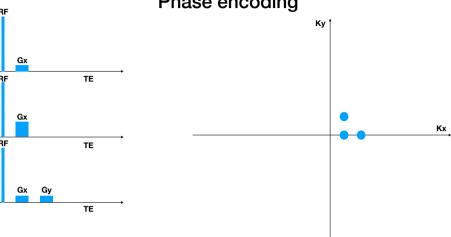

Correlation between a signal along one dimension (e.g. time or space) and a harmonic oscillation (frequency)

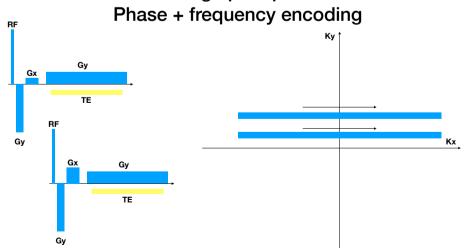

$$\hat{f}\left(\xi
ight)=\int_{-\infty}^{\infty}f(x)\;e^{-2\pi i\xi x}\;dx.$$
 Wave

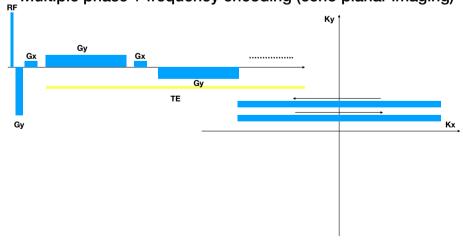

https://kinder-chen.medium.com/denoising-datawith-fast-fourier-transform-a81d9f38cc4c


Fourier transform, 1D, 2D, 3D ...






Fourier transform, 1D, 2D, 3D ...


Filling up k-space Phase encoding

Filling up k-space

Filling up k-space faster Multiple phase + frequency encoding (echo planar imaging)

