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An Axial Velocity Estimator for Ultrasound 
Blood Flow Imaging, Based on a Full Evaluation 

of the Doppler Equation by Means of a 
Two-Dimensional Autocorrelation Approach 

Thanasis Loupas, J.  T. Powers, Member, IEEE, and Robert W. Gill, Member, IEEE 

Abstract- This paper introduces a new velocity estimator, 
referred to as the 2D autocorrelator, which differs from con- 
ventional Doppler techniques in two respects: the derivation of 
axial velocity values by evaluating the Doppler equation using 
explicit estimates of both the mean Doppler and the mean 
RF frequency at each range gate location; and, the 2D nature 
(depth samples versus pulse transmissions) of processing within 
the range gate. The estimator’s output can be calculated by 
evaluating the 2D autocorrelation function of the demodulated 
(baseband) backscattered echoes at two lags. A full deriva- 
tion and mathematical description of the estimator is presented, 
based on the framework of the 2D Fourier transform. The 
same framework is adopted to analyze two other established 
velocity estimators (the conventional 1D autocorrelator and the 
crosscorrelator) in a unifying manner, and theoretical arguments 
as well as experimental results are used to highlight the com- 
mon aspects of all three estimators. In addition, a thorough 
performance evaluation is carried out by means of extensive 
simulations, which document the effect of a number of fac- 
tors (velocity spread, range gate length, ensemble length, noise 
level, transmitted bandwidth) and provide an insight into the 
optimum parameters and trade-offs associated with individual 
algorithms. Overall, the 2D autocorrelator is shown to offer 
the best performance in the context of the specific simulation 
conditions considered here. Its superiority over the crosscorrela- 
tor is restricted to cases of low signal-to-noise ratios. However, 
the 2D autocorrelator always outperforms the conventional 1D 
autocorrelator by a significant margin. These comparisons, when 
linked to the computational requirements of the proposed estima- 
tor, suggest that it combines the generally higher performance 
of 2D broadband time-domain techniques with the relatively 
modest complexity of 1D narrowband phase-domain velocity 
estimators. 

I. INTRODUCTION 

XISTING COLOR flow mapping techniques for ax- E ial velocity estimation can be classified according to 
a number of schemes. Common classification criteria and 
corresponding terminologies include the type of input data (de- 
modulated/RF) and its dimensionality (one-dimensional/two- 
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dimensional or 1D/2D),’ the domain on which the estimators 
operate (frequency/phase/time) and the typical transmitted 
bandwidths associated with them (narrowbandhroadband). 
Despite this diversity, it is important to recognize that all 
techniques take advantage of the same physical principle: the 
gradual translation of the backscattered signal, with respect to 
previous pulse returns, due to the changing distance between 
the traducer and groups of moving scatterers. In the case of 
blood, the backscattered signal is mainly due to aggregates 
of erythrocytes. Although these aggregates are of a generally 
time-varying nature, nevertheless, they exhibit a degree of 
temporal stability which permits the ultrasonic measurement 
of blood flow [l]. 

The gradual translation of the backscattered signal is mani- 
fested both as a phase- and a time-shift between successive 
pulse returns. With very few exceptions, commercial color 
flow scanners use a phase-domain technique, known as the 
autocorrelator [2], [3], for axial velocity estimation. This 
algorithm measures the average phase-shift, with respect to 
the central frequency of the transmitted pulse, present in the 
complex-valued Doppler signal (the signal recorded at a given 
range gate, over a number of pulses, after it has undergone 
phase quadrature demodulation). This is a 1D approach, be- 
cause the echoes received from each range gate are reduced to 
one (complex) value per pulse through filtering or integration 
of the demodulated in-phase and quadrature (I & Q) signal. 
Also, it could be classified as a narrowband approach, in the 
sense that typical pulse lengths are considerably longer than 
the corresponding pulse lengths used in B-mode imaging [4]. 

In contrast to 1D narrowband phase-shift techniques such as 
the autocorrelator, a number of broadband processing schemes 
have been proposed recently, which estimate the axial ve- 
locity of moving targets directly in the time domain by 
operating on the 2D set of received echoes (depth samples 
versus pulse transmissions). These include: crosscorrelation 
techniques, which measure the time-shift corresponding to the 
best match between successive RF returns [5]-[lo]; maximum- 

’ Throughout this paper, the notation “2D’ refers to the dimensionality 
(depth samples versus pulse transmissions) of the input data set used for 
aria1 velocity estimation. Therefore, it should not be confused with two- 
dimensional (axial and lateral component) velocity techniques, or processing 
schemes related to two-dimensional transducer arrays. 
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likelihood estimators, based on a matched filter approach 
which explicitly takes into account all the velocity components 
present in the backscattered signal [ 111, [ 121; interpolation 
methods, which rely on a model of the expected RF corre- 
lation between successive returns and a few measured lags 
to estimate the mean time-shift [ 131-[ 151. A comprehensive 
survey of time-domain techniques can be found in [16]. 

This paper examines a novel estimator which combines 
the generally higher performance of 2D broadband time- 
domain techniques with the relatively modest complexity of 
1D narrowband phase-domain estimators, in terms of both the 
number of computations per output point and the sampling 
rate requirements. The estimator, which could be classified 
as a 2D broadband phase-domain technique, relies on a two- 
dimensional autocorrelation approach to obtain estimates of 
both the mean Doppler and RF frequencies of the signal 
inside the observation window. These estimates permit a 
full evaluation of the Doppler equation and, consequently, 
address the unrealistic assumption, made by all phase-domain 
techniques so far, that the RF frequency of the backscattered 
signal remains constant and equal to the central frequency of 
the transmitted pulse. 

The paper is organized in the following manner. Section I1 
derives the mathematical form of the new estimator, based on 
first principles, and introduces a modification which permits 
processing of baseband signals. The conventional 1D auto- 
correlator [2], [3] and the crosscorrelator [5]-[lo] are also 
analyzed in this section, with emphasis on theoretical results 
from the signal processing literature and a unifying description 
which highlights the common aspects of the estimators. Sec- 
tion I11 describes the simulation approach which was adopted 
to compare the performance of the three estimators in a 
systematic manner. The results of the comparisons, which 
encompass factors such as the velocity spread, range gate and 
ensemble length, noise level and transmitted bandwidth, are 
presented in Section IV. Finally, the concluding remarks of 
this study are summarized in Section V. 

11. AXIAL VELOCITY ESTIMATORS 

The following terminology is used throughout this and sub- 
sequent sections: the terms “range gate length” and “ensemble 
length” specify the number of depth samples and number of 
pulse transmissions, respectively, which are used to derive an 
axial velocity estimate; the terms “fast-time” and “slow-time” 
refer to the axes along the range gate and ensemble directions; 
the frequencies corresponding to the fast- and slow-time axes 
(RF and Doppler, respectively) are denoted by fRF and FD 
when they are expressed in absolute units, or by f and F 
when they are normalized in terms of the fast- or slow-time 
sampling rates (i.e., f = f R F t s  and F = FDT,, where t ,  is the 
sampling interval along depth and T, is the pulse repetition 
period); finally, when referring to 2D arrays (say, r ( m , n ) ) ,  
the first index (m) specifies the column number whereas the 
second index (n)  specifies the row number. 

A. Two-Dimensional Autocorrelator 

The starting point for the derivation of the 2D autocorrelator 
is the two-dimensional Fourier transform of successive RF 

returns, which have been acquired by interrogating a fixed 
line of sight with a sequence of pulses and arranged as a 2D 
data set, with the number of rows and columns corresponding 
to the transmitted pulses and range gate samples, respectively. 
This approach, whose relevance for pulsed Doppler has been 
independently demonstrated in [17] and [18], provides a com- 
prehensive and unifying framework for analyzing the problem 
of axial velocity estimation, because it deals explicitly with 
the gradual translation principle mentioned in the Introduction. 
Wilson [18] has shown that when successive RF returns are 
translated versions of each other, due to target motion, the 2D 
spectrum is nonzero only along radial line segments of the 
frequency plane whose slope is proportional to the amount of 
translation. 

The following two paragraphs make use of the results in 
[19], which studied analytically the problem of 2D spectral 
analysis for discrete limited-duration signals. The case of a 
line of scatterers moving towards the transducer with a purely 
axial velocity v is considered first. The transducer is assumed 
to transmit T, pulses per second, of the type 

s ( t )  = Re[u(t)ej2“fRFct 1 (1) 

where u(t) and fRFc are the pulse’s envelope and central 
frequency, respectively. Then, from [ 191, the analog backscat- 
tered RF signal due to the n-th transmission can be written 
as 

where * is the convolution operator, 6 the unit-impulse func- 
tion, ai the scattering strength of target i, and t i0  the echo 
reception from the same target during the 0-th emission. The 
above equation states that for the case of purely axial motion, 
the rows of the 2D data set ra(t ,n)  are shifted versions of 
each other. Again from [19], the 2D spectrum of a discrete 
version of P ( t ,  n) ,  consisting of N pulse returns of M depth 
samples each, is 

where t ,  is the sampling interval along depth, f and F 
the normalized RF and Doppler frequencies and Ro(f) the 
discrete Fourier transform of a sampled version of the 0th 
return ra(t,O). Assuming for the moment that M and N 
are sufficiently large such that the spectral windows in (3) 
become impulses, the above equation states that r( f ,  F )  is 
zero everywhere, apart from the line passing through the 
origin of the frequency plane and having a slope F l  f equal 
to 2vT,/ct,. On that line, r(f, F )  consists of exponential 
random variables multiplied by the bandpass spectrum IS( f ) I 2  
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of the transmitted pulse s ( t ) ,  resulting in two line segments 
centered around plus and minus the normalized central RF 
frequency fc [19]. In other words, for a given normalized RF 
frequency f’ within the pulse bandwidth, the 2D spectrum is 
nonzero only for a normalized Doppler frequency F’ equal 
to 2vTs f ’ lc t , .  Using absolute frequency notation (FA = 
F’/T,, fkF = f ’ / t s )  this becomes Ff, = 2vfkF/c. Thus, the 
familiar Doppler equation applies for all RF frequencies within 
the transmitted bandwidth. Returning now to the realistic case 
of finite M and N ,  convolution with the separable spectral 
windows in (3) causes smearing of the 2D spectrum, so that 
the ideal line segments become elliptical masses. This is a 
manifestation of spectra broadening due to the limited extent 
of the observation window [18]. In addition to broadening, 
the process of spectral convolution introduces a degree of 
correlation between neighboring points of the 2D frequency 
plane, which can become quite significant for a short range 
gate and/or ensemble length. 

By means of the superposition principle, the above analysis 
can be extended to the case of scatterers arranged in con- 
centric annulae which share the same axis as the beam and 
move towards the transducer with different velocities. For this 
arrangement, the analog backscattered RF signal is 

(4) 

where the subscript lc specifies a particular annulus of scat- 
terers having the same axial velocity V k ,  D ( T k ) ,  refers to the 
lateral sensitivity of the transducer with respect to an annulus 
at a radius r k  from the beam axis, and the remaining symbols 
are defined as in (2). The corresponding power spectrum of a 
sampled and finite-extent version of F ( t ,  n) is then equal to 

where ROk (f ) denotes the Fourier transform of the convolution 
between the pulse s ( t )  and the 0th return due to the lcth 
annulus of scatterers. In this case, the 2D spectrum consists of 
exponential random variables distributed along as many radial 
line segments as the number of velocity components present 
in the backscattered RF signal. 

The previous two paragraphs and, in particular, the points 
referring to the stochastic nature of the 2D spectrum, imply 
that while the mean RF frequency ( f )  may fluctuate randomly, 
the corresponding mean Doppler frequency ( F )  tracks these 
fluctuations so that their ratio (F)/(f) is constant and propor- 
tional to the mean axial velocity. An experimental illustration 
of this phenomenon is presented in Fig. 1, which is discussed 
later in this section. The fact that the mean RF and Doppler 
frequencies vary considerably, even for constant flow, but they 
also tend to track each other has been previously documented 

DOPPLER (kliz) 

Fig. 1. Histogram of the estimated mean Doppler and RF frequencies, 
obtained by applying the 2D autocorrelator to data from a tissuemimicking 
belt phantom, moving at a constant velocity (see text for acquisition and 
processing details). 

in [20], where it was mentioned as a serious drawback of the 
conventional 1D autocorrelator which assumes that the mean 
RF frequency is constant and equal to the central frequency 
of the transmitted pulse. This drawback can be overcome 
by deriving estimates of both the mean Doppler and mean 
RF frequency for each location of the observation window. 
The most straightforward approach would be to estimate the 
mean axial velocity from the slope of the line passing through 
the origin of the frequency plane and through the center of 
mass of the 2D spectrum in either the positive (0 5 f < 0.5) 
or negative (-0.5 5 f < 0) frequency semiplane. The 2D 
autocorrelation estimator implements this approach directly in 
the time domain. 

Due to the properties of the 2D Fourier transform for real 
signals [21, ch. 1.3]), the spectrum r(f, F )  is symmetric with 
respect to the origin of the frequency plane. Therefore, in 
order to identify its center of mass in either the positive or 
negative semiplane, the symmetry must be removed. This can 
be achieved by means of the analytic signal version of the 
backscattered RF echoes. For the discrete case, the analytic 
signal +(m,n) of r(m,n)  is defined as 

t (m ,  n)  = T(m, n)  - j q m ,  n)  (6 )  

where ?(m,n) denotes the discrete 1D Hilbert transform of 
r(m,n)  along depth 

-1 
7rn 

q m ,  n) = - * T ( m ,  n)  (7) 

A direct consequence of the Hilbert transform’s properties 
[22, ch. 121 is that the Fourier transform R ( f , F )  of the 
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analytic signal ?(m,n) is zero for the semiplane defined by 
-0.5 5 f < 0 

(8) 2 R ( f ,  F )  0 5 f < 0.5 
-0.5 5 f < O  R ( f 7 F ) =  { 0 

and, assuming that clutter has already been removed, the center 
of mass of the 2D spectrum in the positive semiplane coincides 
with the centroid of the entire 2D spectrum r ( f , F )  = 
l k ( f ,F ) I2 .  The center of mass is located at point {(f), (F)}, 
whose coordinates are the mean normalized frequencies along 
the RF and Doppler frequency axis, respectively. 

ff‘( f ,  F) d f  dF 
(9) ( f )  = -0.5~ -0.5 1,5 f03 f7  F )  df dF 

/0.5 Ff’( f ,  F) df dF 

/ f‘( f ,  F )  df dF 
(10) ( f )  = -0 .5  -0.5~ 

-0.5 -0.5 

Appendix A shows that ( f )  and (F) can be estimated 
directly in the time domain by evaluating the phase of the au- 
tocorrelation function +(m’, n’) of the analytic signal ?(m, n)  

M - m ‘ - 1  N-n’-1 

?(rn’, n’) = C ?(m, n)i* (m + m’, n + n’> 
m=O n=O 

(11) 

at lags (m’ = 1, n’ = 0) and (m’ = 0, n’ = l), where it 
has been assumed that the observation window consists of M 
depth samples (m = 0 ,1 , .  .. , M - 1) and N pulse returns 
(n  = 0,1, . . . , N - 1). More specifically 

- j  ay(m’, n’) I 

t . . . . . .  . .  . . . . . . . I  1 
loa 200 300 400 500 

ESTlMATE NO 

Fig. 2. 
lator, using a subset of the input data set of Fig. 1. 

Sequence of axial velocity estimates provided by the 2D autocorre- 

to highlight the fact that the 2D autocorrelator performs a full 
evaluation of the Doppler equation. 

The benefits of this approach can be appreciated from Fig. 
1, which plots the histogram of estimated Doppler and RF 
mean frequencies for an ensemble length equal to two pulses 
( N  = 2),  a range gate length equal to twenty samples ( M  = 
20) and 16,000 observation windows. The input data for this 
figure were obtained by interrogating a tissue-mimicking belt 
phantom [23] moving at a constant velocity of 24.5 cm s-’. 
The angle of insonation was approximately 60°, the 20-dB 
pulse length corresponded to four wavelengths of the central 
RF frequency, which was equal to 4 MHz, the sampling RF 
rate was 20 MHz (ts = 50 ns) and the pulse repetition 
frequency was 2.5 kHz (Ts = 0.4 ms). From this figure, 
it is obvious that both the Doppler and RF mean frequency 
estimates fluctuate considerably about their true values but, 
at the same time, they tend to be distributed along radial 
line segments of the 2D frequency plane. By averaging the 
individual Doppler and RF estimates, it was verified that the 
slope of the line passing through the origin of the frequency 
plane and the centroid of the estimates is equal to the predicted 
value of (FD)/(~RF) = 2wcos O/c = 1.59*10-4. A sequence 
of axial velocity estimates, derived from a subset of the input 
data mentioned above, is plotted in Fig. 2,  while the velocity 
estimates obtained from the same data using the conventional 
ID autocorrelator and crosscorrelator are shown in Figs. 4 
and 7, respectively. 

Since the ’lope Of the line passing through the Origin 
the 
2 ( v ) T s / c t s ,  the mean 

Of 

to 
estimate (‘2D) provided by the 

A desirable property of the 2D autocorrelator is that, apart 
from the analytic RF signal, it can also be applied to the 
complex demodulated (in-phase and quadrature, or 1 & Q) 

Plane and the centroid { ( f ) ,  ( F ) )  is 

signal. More specifically, it can be shown [24, ch. 6.11 that 
quadrature demodulation of an RF signal using ~ R F  dem as the 
reference frequency is equivalent to shifting the contents of 
the analytic RF signal’s spectrum by fRFdem towards zero. If 

z(m, n)  = I (m,  n )  + jQ(m, n)  

2D autocorrelator can then be evaluated from 

(14) (u2D) = 

(16) 
which can be rearranged, using absolute frequency notation 

represents the demodulated version of the RF signal ~ ( m ,  n) ,  
the above statement implies that the spectrum of z(m,n)  is 

-tan-’( 1 Im[.ii(07 1)1 } - - ( F D )  (15) given by 
c 27rTs 
2 2 tan-l { ImIi(l,O)l} 

(v2D) = - 
2 ( ~ R F )  

2Tt, Re[?(l, 011 lz(f, F)I2 = Ik(f + fdem, F)I2 = f ‘ ( f  -k fdern, F) (l7) 
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where the symbol fdem denotes the normalized counterpart 
of the absolute frequency f ~ ~ d e m  of the reference sinusoid. 
Therefore, when the 2D autocorrelator estimator is applied to 
the complex demodulated signal z (m  , n)  , the measured mean 
Doppler frequency remains unchanged, while the factor fdem 
must be added to the measured mean RF frequency to take 
into account the shift towards zero. The following equation, 
modified from (15), describes the mean velocity obtained from 
the 2D autocorrelator for the case of the complex demodulated 
signal z(m, n): 

(u2D) = ’ 2 

where Ydem is the 2D autocorrelation function of z(m,  n)  

M-m‘-1 N-n’  - 1 

Ydern(m’, n’) = z(m, n)z*(m + m’, 12 + n’) 
m=O n=O 

M -m’ - 1 N -n‘ - 1 

= [I(m,n)I(m+m’,n+n’) 
m=O n=O 

+ Q(m, n)Q(m + m’, n + n’)] 

mean Doppler frequency estimates. Both factors contribute to 
performance gains, as documented in the results of Section IV 
which compares the output statistics of the 2D autocomelator, 
conventional 1D autocorrelator and crosscorrelator for a wide 
range of operating parameters and signal characteristics. 

B. One-Dimensional Autocorrelator 

The 1D autocorrelator [2] represented the breakthrough that 
enabled color flow mapping to be implemented in real-time. 
The same algorithm is used even today by the majority of 
commercial scanners. The estimator is one-dimensional, in the 
sense that it is applied to the complex demodulated ( I  & Q) 
signal after its values along the depth axis are collapsed into 
a single point per pulse. This can be achieved either by 
filtering the I & Q signal obtained from a pulse emission and 
retaining only one value per sample volume, or by integrating 
the I & Q signal along the extent of the range gate. This 
reduction in the dimensionality of the data is identical to that 
used in conventional PW Doppler where, in the filtering case, 
the filter’s frequency response is matched to the spectrum of 
the pulse’s envelope and, in the integration case, the range 
gate is chosen to be equal to the pulse length, due to noise 
considerations [25]. While filtering and integration appear 
to be very similar in the context of PW Doppler [25], the 
latter option has been chosen here because of its mathematical 
tractability, while filtering is examined only implicitly. Before M-m’-1 N-n’-1 

j [Q(m, n) I (m + m‘, n’) proceeding with the 1D autocorrelator, the spectral content of 
the integrated Doppler signal must be specified. Starting from 
the complex demodulated signal z(m,  n)  of (16), its integrated 
version can be expressed as 

m=O n=O 

- I ( m ,  n)Q(m + m’, 12 + n’)] (19) 

Finally, (18) and (19) can be combined to express the mean 
velocity in terms of the I & Q samples according to (20). 
Equation (15)-the analytic RF version-and (1 8) or 
(20)-the I & Q version-are mathematically equivalent. 

M-1 

zint(n) = z(m, n)  = Iint(n) + j Q i n t ( n )  
m=O 
M-1 M-1 

(21) = I (m,n)  + j  Q(m,n) 

The 1D integrated Doppler signal zint(n) can be thought 
of as providing the average phase of the signal inside the 
sample volume, with respect to the frequency of the reference 
sinusoid used in the demodulation process. The spectral con- 
tent of zint(n) can be related to the 2D Fourier transform 
framework by observing that the integration described by 
(21) is equivalent to a projection of the 2D array z (m,n)  

However, the latter is highly advantageous from an imple- 
mentation point of view, because the I & Q signal is already 
available in most scanners. In addition, baseband processing 
requires a significantly lower sampling rate compared to 
RF processing, which is translated directly into hardware 
simplicity and computational efficiency. 

As discussed further in Subsection 11-B, the 2D autocor- 
relator differs from the conventional 1D autocorrelator in 
terms of two factors: (a) the explicit estimation of the mean 
RF frequency; (b) the 2D algorithmic form used in deriving 

m=O m=O 

(u2D) ’ 2 

1 
2nt, 
- 

1 
-tan-’ 
2nT, 

m=O n=O 
M-2N-1 \ \  



along the horizontal (depth) axis. Due to the projection-slice 
theorem [26], the 1D Fourier transform Zint(F) of zint(n) 
is the vertical slice of the 2D Fourier transform Z(f, F )  of 
~ ( m , n )  at f = 0. By making use of (17), the 1D spectrum 
lZint ( F )  l 2  can now be written as 

In other words, the spectrum of the integrated I & Q 
Doppler signal coincides with the column of the 2D analytic 
RF spectrum that passes through fdem. While this result is 
mathematically correct and has also been verified in terms 
of numerical examples, the following clarification must be 
made, to avoid potential misunderstandings. The measured 
2D analytic RF spectrum f'(f, F ) ,  obtained by means of 
2D Fourier analysis, is only a distorted version of the ideal 
2D spectrum (see the discussion following expression (3), in 
Subsection II-A). In particular, convolution of the ideal 2D 
Fourier transforms with the separable spectral windows in (3) 
or (5) means that each column of the measured 2D analytic 
RF spectrum includes contributions from adjacent columns. 

An alternative approach for deriving (22) is to treat inte- 
gration as a combination of two operations: (a) filtering the 
rows of z(m, n) by convolving their real and imaginary parts 
with a window function w ( i )  = 1,i = 0, . . .  ,A4 - 1, and (b) 
obtaining a single filtered I & Q sample per pulse return, by 
retaining only the output I & Q sample which is located at the 
center of the window. Since convolution of two functions in 
the time domain corresponds to their product in the frequency 
domain 124, ch. 4.31, operation (a) is equivalent to row-wise 
multiplication of the 2D Fourier transform Z ( f ,  F )  of z(m, n)  
by the Fourier transform W ( f )  of the window function w ( i )  
where, for the case of integration, W ( f )  is in fact equal to 
the unit-impulse function S(f). Based on the properties of this 
function [24, ch. 2.31, the product Z ( f , F ) S ( f )  is given by 
Z(0 ,  F )  for f = 0, and zero everywhere else. Now, due to the 
inverse form of the projection-slice theorem [26], operation 
(b)-a vertical slice through the 2D array of filtered I & Q 
samples in the time domain-corresponds to a projection of the 
2D Fourier transform Z ( f ,  F ) S ( f )  onto the Doppler ( F )  axis, 
which is simply equal to Z(0 ,  F ) .  Hence, the spectrum of the 
integrated I & Q Doppler signal is given by (22). While this 
proof may not be as elegant as that of the previous paragraph, 
it does emphasize the similarities that exist between filtering 
and integration, and provides a straightforward methodology 
for determining the spectral content of the filtered Doppler 
signal for arbitrary filter coefficients. 

Returning now to the 1D autocorrelator, its function is to 
extract the mean frequency of the integrated Doppler signal 
by means of time-domain operations. By taking into account 
(22) and invoking the 2D frequency plane arguments originally 
mentioned in Subsection II-A, the 1D autocorrelator can be 
considered as estimating the mean velocity from the slope 
of the line passing through the origin of the frequency plane 
and the centroid of the analytic RF spectrum's column at 
f = fdem, where fdem denotes the normalized frequency 
of the reference sinusoid used in the demodulation. In other 
words, a mean velocity estimate is derived from the 1D 
integrated Doppler signal according to 

The spectral centroid (F)If=fdem can be calculated directly in 
the signal domain by making use of a theorem which states 
that the spectral moments of a signal can be evaluated in terms 
of the derivatives of its autocorrelation function [22, ch. 81. 
Since the derivation is well known (e.g., see 121 or 13, ch. 
6.6.21) and a two-dimensional version of it has been included 
in Appendix A, it will not be repeated here. It suffices to state 
that if the autocorrelation of the 1D integrated Doppler signal 
is given by 

then, the mean Doppler frequency (F)If=fdem is 

which can be incorporated into (23) to give 

By making use of (25), (21), and (16)., (28) is obtained. 
Equation (28) has been expressed explicitly in terms of the 

I & Q samples, so that direct comparisons can be made with 
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(VlD) ' 2 

N-2 M-1 M-1 M-1 M-1 

Q(m, n) I(m, n + 1) - I ( m ,  n) Q(m, n + 1) 
n=O m=O m=O m=O 
N-2 TM-1 M-1 M - 1  M-1 
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DOPPLER (kHz) n 

Fig. 3. Histogram of the estimated mean Doppler frequencies, obtained by 
applying the 1D autocorrelator to the input data set of Fig. 1 .  Note that 
the 3D histogram format of Fig. 1 has also been adopted here to facilitate 
comparisons. 

the corresponding form of the 2D autocorrelator in (20). The 
following two differences are observed. First, as far as the 
RF frequency value required for the evaluation of the Doppler 
equation is concerned, the 1D autocorrelator assumes that it is 
constant and equal to the frequency of the reference sinusoid 
used in the demodulation (which is typically the central fre- 
quency of the RF pulse), instead of estimating it at each depth 
location of the observation window. Second, with regards to 
the mean Doppler frequency, the 1 D autocorrelator collapses 
the I & Q data into one complex value per pulse return before 
performing correlation along the slow-time axis, unlike the 2D 
autocorrelator which incorporates explicitly the contributions 
of all I & Q samples into the frequency estimation process. 
The effect of these differences is illustrated in Figs. 3 and 4, 
which have been based on the same data (as well as range gate 
and ensemble length) and are therefore directly comparable to 
Figs. 1 and 2, respectively. Fig. 3 presents the histogram of 
the mean Doppler frequency estimates provided by the 1D 
autocorrelator, which exhibits noticeably heavier tails than the 
corresponding histogram tails of the 2D autocorrelator (Fig. 
1). Further improvement is observed in the axial velocity 
estimates of the 2D autocorrelator of Fig. 2, compared with 
the output of the 1D autocorrelator in Fig. 4, because of the 
compensation for the RF frequency fluctuations. 

An insight into the statistical properties of the 1D autocor- 
relator can be obtained from the theoretical results in [27]. 
Adapting the symbols used originally in [27] to maintain con- 
sistency with the notation of this paper, a complex Gaussian 
process (the true signal) is combined with another process of 
the same type (noise), to produce the observed signal. The 

1 . .  . . . . . .  I I 
loo 200 300 400 500 

ESTIMATE No 

Fig. 4. Sequence of axial velocity estimates provided by the 1D autocorre- 
lator. The input data set for this figure was the same as that used in Figs. 
2 and 7. 

autocorrelation of the combined process is then 

y(~’) = ly(T’)le-QTe(T‘) = y l ( ~ ’ )  + y 2 ( ~ ’ )  

= I y l  (TI) l e M l  (T’) + IY2(T’) l e W Z  (T‘)  (29) 

where subscripts 1 and 2 denote the true signal and noise, 
respectively. The standard deviation of the mean frequency 
estimate, as given in [27] is 

} ‘ I2  (30) 

where N denotes the number of samples and T’ represents 
the lag value used in approximating the derivative of the 
autocorrelation function as a finite difference. This expression 
can be simplified in the case of white noise (i.e., yz(T’) = 0 
for T’ # 0) and the dependence on the signal-to-noise ratio 
(SNR = Iyl(0)l/ly2(0)l) can be made explicit. 

Ir(0)12 - ly(T’)12cos 4~[6‘(T’) - Ql(T’)] 
U = {  ~NT~T’~IY~(T’)~~ 

As a case study, let us assume that the spectrum of the 
true signal is Gaussian in shape with mean frequency Fp and 
frequency spread F,. Then its autocorrelation is 

and rearrangement of (32) results in 

where the left-hand side of the equation represents the standard 
deviation of the 1D autocorrelator normalized in terms of the 
number of samples and the frequency spread, and the auxiliary 
variable x is defined as x = 27rF,T‘. The standard deviation 
is plotted in Fig. 5 as a function of x ,  for SNRs varying from 
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Fig. 5. Theoretically predicted standard deviation curves (from expression 
34) of the 1D autocorrelator for six SNRs. The standard deviation has been 
normalized by multiplying it with a factor N’/’/F,, and is plotted against 
the auxiliary variable z = 27rFuT’, where N is the number of pulses, F,, 
the spectrum’s frequency spread and T’ the lag value used for evaluating the 
phase of the autocorrelation. 

-10 to 40 dB in steps of 10 dB. Expression (34) implies that 
the standard deviation of the 1D autocorrelator: 

is independent of the mean frequency Fp 
is inversely proportional to the square root of the number 

depends on a function of 1 + l/SNR 
has a complex relationship to the frequency spread F, 
which, as Fig. 5 illustrates, depends on both the lag value 
T’ and the SNR. 

The above statements may be correct for the signal of (33), but 
should be treated only as an approximation of the properties 
of the 1D autocorrelator in the context of color flow map- 
ping. This is because the analysis in [27] is concerned with 
strictly 1D signals and, therefore, does not take into account 
phenomena related to the transformation of a 2D RF array into 
a 1D integrated I & Q sequence, nor does it address explicitly 
the issue of aliasing. An additional insight into the statistical 
properties of the 1D autocorrelator can be obtained from the 
theoretical analysis in [28]. 

In concluding this subsection, a number of techniques, 
which are also applied to the 1D integrated I & Q signal, 
should be mentioned. These include averaging of the instan- 
taneous Doppler frequency [29] as well as variants of the 1D 
autocorrelator that use more than one correlation lag [30], [31] 
and estimators based on autoregressive models [32], [33]. In 
general, though, the performance of these techniques has not 
been shown to be consistently better than the 1D autocorrela- 
tor. This suggests that, at least for the case considered here, 
the specific form of an algorithm is less important than the 
information content of the input signal on which it operates. 

of samples N 

C. Crosscorrelator 

Unlike the 1D techniques mentioned in the previous sub- 
section, the crosscorrelation estimator is applied directly to 
the received RF echoes and, therefore, has access to the full 
information carried by them. Crosscorrelation represents one 
of the fundamental and most thoroughly investigated tools in 
digital signal processing, and has been used extensively in a 

number of applications involving time-delay estimation. Two 
comprehensive sources of information on the subject are the 
book by Bendat and Piersol [34] and a special issue of IEEE 
Transactions on Acoustics, Speech and Signal Processing [35]. 

The relevance of crosscorrelation for color flow mapping 
was first demonstrated by Bonnefous and Pesque [5], [6]. 
This work, in conjunction with the work by O’Brien’s group 
[7]-[lo], had a major impact, in the sense that it caused 
researchers in the field to reconsider the traditional Doppler 
frequency-shift paradigm and think of the mean velocity 
estimation issue in terms of the gradual shifts that the backscat- 
tered RF echoes experience between successive pulses. In 
its simplest form, the crosscorrelator estimates this shift by 
locating the maximum of the crosscorrelation function between 
two successive RF returns. For continuous and infinite-extent 
signals and just one velocity component, it is easy to show that 
this “best-match” approach provides the true shift. By making 
use of (2), the RF returns due to pulses n and n + 1 are 

and 

= r a t +  ,,n) 2vTs 

(35) 

respectively. The crosscorrelation between ra ( t ,  n)  and 
ra( t ,n  + 1) is given by 

+m 

y c R s ( t ’ )  = .I, ra ( t ,  n)r”(t + t’, n + 1) d t  (37) 

while the autocorrelation of ra ( t ,  n ) ,  which is equal to the 
autocorrelation of P(t ,  n + I), is 

+m 

y(t’) = P(t ,n)Ta(t  + t’,n) d t  

+m 
- P(t ,  n + l ) ra ( t  + t’, n + 1) d t  (38) 
- L 

With the help of (36) , it is straightforward to show that 

(39) 

and since, with the exception of purely periodic functions, 
the autocorrelation y(t’) of a signal has a global maximum 
at t’ = 0 

(40) 

Instead of searching for the peak of the crosscorrelation, 
another option, potentially advantageous from an implemen- 
tation point of view, is to make use of the fact that when 
the crosscorrelation function ~ C R S  (t’) reaches a maximum, 
its Hilbert transform jc~s( t ’ )  passes through zero [36]. This 
property implies that the phase of the crosscorrelation func- 
tion’s analytic form ?cRs(~’), defined as 

2vTs 
yCRs( t ’ )  -+ max for t’ = t’ - -- 

O -  c 

?CRS(t’) = YCRS(t’) - j?CRS(t’) = I?CRS(t’)le’eCRS(t’) 

(41) 
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is also zero when the crosscorrelation YCRS(~’) reaches a 
maximum. An experimental illustration of these properties is 
shown in Fig. 6, which plots the crosscorrelation as well as 
its Hilbert transform and phase for a pair of RF pulse returns 
from the input data used to generate Figs. 1 and 2. Hence, 
the time delay tb = -2wT,/c between the two successive RF 
pulse returns defined by (36) can be identified by searching 
for zero-crossings of the phase Oc~s(t’). Provided that this is 
a linear function of time, it can be defined in terms of just two 
values, say at t’ = 0 and t‘ = t,, according to 

t’ 
OCRS(t’) = eCRS(0)  + [eCRS(ts)  - OCRS(o)]< (42) 

Solving for the argument t o  which results in O c ~ s ( t 0 )  = 0, 
gives 

and, by making use of (40), the corresponding velocity esti- 
mate could be written as 

This equation has some interesting implications. First, due 
to (39) and the fact that the autocorrelation and spectrum of a 
signal form a Fourier transform pair, the quantity [BcRs(~,)  - 

6CRS(o) ] /2T t s  in the denominator of (44) (i.e., the rate of 
change in phase along the fast-time axis) provides an estimate 
of the RF signal’s central frequency ~ R F ~ .  Then, because of 
the mathematical equivalence between the autocorrelation of 
the analytic signal and the analytic form of the autocorrelation 
function [37, ch. 10.41, the quantity OCRS(~)/~TT, in the 
numerator of (44) (i.e., the rate of phase change along the 
slow-time axis) is identical to the Doppler frequency estimate 
provided by the 2D autocorrelator in (13). Therefore, (44) can 
be expressed as w = ( C / 2 ) ( F D / f R F c ) ,  which is effectively 
a full evaluation of the Doppler equation and equivalent to 
the estimate provided by the 2D autocorrelator (see (15)). At 
this point it should be emphasized that, while the preceding 
material highlights the fundamental similarities between the 
crosscorrelation and 2D autocorrelation approaches for axial 
velocity estimation, the two approaches have been shown to 
be mathematically equivalent for the specific set of conditions 
mentioned above (namely, the ideal time-shift model of ex- 
pression 36 and the linear phase model of expression 42). 
Consequently, no firm statements can be made when one or 
more of those conditions is not valid (e.g., when the linear 
phase assumption is violated because of phase discontinuities 
in the RF signal, due to destructive interference [38]). 

When more than one time shift (or velocity component) is 
present in the RF returns, i.e. 

k 

it is still straightforward to show that 

1 

$ 0.75 

F 0.5 

K 
K O  
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Fig. 6. Crosscorrelation between two successive RF pulse returns (top) as 
well as its Hilbert transform (middle) and phase (bottom) for a range gate 
length of 20 RF samples (the sampling RF interval is 50 ns). Note that the 
me shift between the two RF returns, which were taken from the moving-belt 
data first used in Fig. 1, is 65 ns. 

where it has been assumed that the individual returns T: ( t ,  n)  
associated with each velocity component share the same 
autocorrelation function y(t’). In this case, however, the 
equivalent of (40) cannot be derived without knowing the 
exact form of y(t’). In other words, it is not possible to show 
theoretically that the maximum of the crosscorrelation function 
occurs at a time related to the mean velocity, although this 
property has been verified experimentally [8], [ 101. 

Turning now to the implementation of the crosscorrelator 
for discrete signals, the following crosscorrelation formula 
applies: 

M-mi-1 

YCRS(m’) = T(m, n)T(m + m’, n + 1) (47) 
m=O 
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This is a sampled finite-extent version of (37). In general, the 
position of the crosscorrelation maximum does not coincide 
with the sampling grid and has to be found in terms of an 
interpolation scheme. The underlying idea is, first, to locate 
the peak of the sampled crosscorrelation function (coarse 
estimate) and, then, fit a curve which approximates the shape 
of the crosscorrelation around its maximum (fine estimate). 
A parabola is the most common choice for the fitting curve. 
According to this method [39], if lcOarSe denotes the index 
which corresponds to the crosscorrelation peak, the fractional 
value which defines the global maximum is given by (48) 
while the mean velocity is then calculated from 

(49) 

From the theoretical expressions for the statistical properties 
of the crosscorrelator which have been derived in [40], it can 
be stated that the standard deviation of the estimator’s output 
is: 

. 
b 

independent of the time shift 
proportional to the RF sampling interval t,. 
dependent on a function of 1 + l /SNR 
inversely proportional to the square root a of the 
number of samples used in evaluating the crosscorrelation 
function. 
inversely proportional to the bandwidth of the RF signal. 

These statements are applicable to the case of an ideal 
time-shift relationship, where each pulse return is an identical 
but delayed version of its predecessors. A detailed study 
of the crosscorrelator’s performance in the context of ultra- 
sonic measurement of flow, which included error analysis and 
computer simulations, has shown that the standard deviation 
of this estimator is inversely proportional to the maximum 
correlation coefficient between two consecutive RF returns [7]. 
The maximum correlation coefficient is, in turn, determined 
by the lateral beamwidth and transverse velocity magnitude as 
well as by the number of velocity components present within 
the range cell [7]. Another factor that affects the performance 
of the crosscorrelator is the extent of the search region [41]. 
This is particularly true for low SNRs, where expanding the 
search region results in a sharp increase in the number of 
false peaks found [42]. In the implementation adopted here, 
the argument m’ of the crosscorrelation function could take 
values in the range 

where 1/ f C  denotes the normalized period of the central fre- 
quency component. The search region for the crosscorrelation 
peak was restricted to plus/minus half the normalized central 
period 1/2fc, while the two extreme points on either side of 
the range in (50) were evaluated in case they were needed 
for the parabolic fit operation of (48). A sequence of axial 

ESTIMATE No 

Fig. 7. Sequence of axial velocity estimates provided by the crosscorrelator. 
The input data set for this figure was the same as the one used in Figs. 2 and 4. 

velocity estimates provided by the crosscorrelator, based on 
the same RF data and range gate length as those used in Figs. 
2 and 4, is shown in Fig. 7. Comparison with the estimates 
of the 2D autocorrelator (Fig. 2) indicates that the outputs of 
both estimators are very similar (with the exception of two 
false negative peaks in the crosscorrelator’s case) and clearly 
superior to the output of the conventional 1D autocorrelator 
(Fig. 4). 

The preceding discussion is applicable to the crosscorrelator 
when only a pair of RF returns is used. The question arises as 
to how this estimator can be modified to handle an arbitrary 
number of RF returns. It has been proposed in [8] that N(N - 
l ) / 2  individual shift estimates can be obtained by operating on 
all possible pairs which are separated by 1’2,  . . . , N - 1 pulse 
repetition intervals T,. These estimates can then be combined 
according to a weighted averaging scheme with experimentally 
determined weights. However, recent in vitro experiments 
suggest that this weighted averaging scheme does not appear 
to improve the precision of the estimates, compared to straight 
averaging applied to the N - 1 consecutive pairs of RF returns 
[lo]. In this paper, and as part of the simulations described in 
Sections I11 and IV, we evaluated the latter approach as well as 
an alternative which incorporates all RF returns into a single 
crosscorrelation function 

N - 2  M-mi-l 

ycFts(m’) = r(m,n)r(m + m’,n + 1) (51) 
n=O m=O 

Since the results obtained from (5 1) were considerably better, 
they were selected for presentation in Section IV. The main 
reason for the superiority of (51) is that the search for the 
crosscorrelation maximum is carried out on the average of the 
individual crosscorrelation functions obtained from consecu- 
tive pairs of RF returns, thus minimizing the occurrence of 
false peaks. 

To complete the description of the crosscorrelator, two 
groups of related techniques will be briefly discussed. The first 
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is a family of estimators known as generalized crosscorrelation 
functions [43]. The basic concept behind this approach is to 
prefilter the RF signals to make them as white as possible 
and, therefore, increase the height and decrease the width of 
the primary crosscorrelation peak. Simulations have shown 
that this approach offers performance gains only when the 
exact spectra of the signals involved are known [44]. This is 
clearly not the case in color flow mapping. The second group 
attempts to find the best match between consecutive pairs of 
signals by searching for the shift that minimizes the sum of 
either the squared or absolute differences. It has been shown 
in [40] that both techniques are identical to the crosscorrelator, 
with the exception of very high SNRs (>20 dB) where they 
exhibit slightly better performance, although these findings 
are contradicted by other studies [45] which suggest that the 
crosscorrelator is consistently better. In any case, difference 
techniques offer a clear implementation advantage because of 
their relative computational simplicity, as demonstrated by a 
hardware version of the sum-of-absolute-differences estimator 
which has been incorporated into a real-time speckle-tracking 
system for quantifying two-dimensional motion (axial and 
lateral velocity components) [46]. 

111. SIMULATION DETAILS 

The aim of the simulation was to generate data which would 
reproduce the stochastic properties of real-world signals in 
a computationally efficient manner, so that reliable statistics 
could be drawn on the performance of the velocity estima- 
tors under investigation by carrying out a large number of 
repetitions. 

A. RF Pulse 

To generate an asymmetric RF pulse, which resembles real 
signals more closely than the common choice of a Gaussian- 
shaped pulse, the discrete equivalent of a model suggested in 
[47] was used: 

s(m) = (a1m + a2m2)e-bm cos(27r fcm) 
m = 0,1,  . . .  ,511 

f c  = 118 (52) 

Note that the normalized central pulse frequency f c  was al- 
ways set to one eighth (corresponding to a sampling rate equal 
to eight times the pulse’s central frequency) to permit a proper 
implementation of the crosscorrelator, whose performance was 
observed to deteriorate for lower sampling rates. The other 
parameters (al, a2 and b)  in (52) were varied to achieve 
the desired pulse characteristics (20-dB length and/or 20-dB 
fractional bandwidth). 

B. Backscattered Signal 

The simulation of the backscattered RF signal adopted the 
model of expression (4), which describes scatterers arranged 
in concentric annulae sharing the same axis as the ultrasound 
beam and moving towards the transducer with different ve- 
locities (i.e., axial flow in the presence of multiple velocity 
components). The starting point was to generate K sequences 

of 5 12 points, corresponding to K velocity components, by 
convolving the pulse sequence s(m) of (52) with white 
Gaussian noise g(m, k )  

The convolution was performed in the frequency domain by 
multiplying the row-wise complex Fourier transforms of s (m)  
and g(m, k )  and then evaluating the inverse Fourier transform 
of the product. Approximating the interaction between the 
pulse and a very large number of discrete scatterers by means 
of the operation described above can be justified on the basis 
of the central-limit theorem [37, ch. 8.61. Shifting of the 
individual returns rk(m,  k )  was achieved by means of an 
interpolation scheme described in [ 131. The exact formula used 
to calculate the backscattered RF array ~ ( m ,  n) was 

- K-1 

where m k  = m + (2nukTs/ct ,  and [ m k ]  denotes the integer 
part of m k  . In all cases, thirty three velocity components were 
chosen ( K  = 33). In order to evaluate the effect of velocity 
spread on the estimators’ performance, individual velocities 
v k  were distributed uniformly around the mean velocity (U)  

with the two extreme velocity spread cases considered being 
0% (all uk values equal to (U)) and 50% (wk values covering 
the range [0.75(u), 1 .25 (~) ] ) .  

The analytic RF signal +(m, n)  was calculated from r(m, n)  
with the help of (8). In practical terms, this involved evaluating 
the row-wise complex Fourier transform of r(m, n) ,  setting 
its negative-frequency part to zero and then performing the 
inverse Fourier transform. The demodulated I & Q signal 
z(m,n)  was obtained by making use of (17), i.e. the row- 
wise complex Fourier transform of +(m,n) was shifted by 
f c  towards the origin of the frequency axis, followed by an 
inverse Fourier transform operation. We have verified that this 
approach produces results identical to those obtained by the 
conventional demodulation method (mixing with the reference 
complex sinusoid, followed by low-pass filtering). 

C. Noise 

Noise was added to the final RF signal ~ ( m ,  n), before 
calculating its analytic and demodulated versions. The noise 
array consisted of a number of rows equal to the ensemble 
length, each 5 12-samples long, of zero-mean white Gaussian 
samples which underwent row-wise filtering in the frequency 
domain using a rectangular bandpass function whose width 
was equal to the 20-dB fractional bandwidth of the transmitted 
RF pulse. In other words, it was implicitly assumed that, prior 
to velocity estimation, all energy of the backscattered signal 
outside the pulse bandwidth is suppressed. The SNR was then 
defined as the power of the signal array over the corresponding 
value of the noise array. 
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D. Velocity Estimators 

All estimators were implemented in floating-point arith- 
metic. The crosscorrelator was applied to the RF signal 
r(m,n) by means of (48)-(51). The 1D autocorrelator was 
applied to the integrated I & Q signal zint(n) using (28). 
The 2D autocorrelator was applied to the demodulated I & Q 
signal z(m,n)  using (20). In addition, to investigate the 
contribution of the explicit mean RF frequency estimation in 
the overall performance of the 2D autocorrelator, a simplified 
version (denoted as 2D-DOP) which retained only the Doppler 
estimation part of the 2D autocorrelator was implemented 
according to (55) .  

E. Output Statistics 

The results of the following section were based on the 
standard deviation of the estimators’ output, which determines 
the precision of each technique. Individual standard deviation 
values were derived from 16384 repetitions for each com- 
bination of simulation parameters. Such a high number of 
repetitions was required in order to obtain reliable statistics, 
due to the noisy nature of the estimators under typical color 
flow mapping conditions. The estimators’ accuracy was also 
documented, but was not included in the results presented in 
the following section because none of the techniques suffered 
from significant systematic bias for the conditions considered 
by the simulation studies. Differences between the true and 
estimated means did occur at low SNRs, but this was due to 
the presence of “spikes” in the estimators’ output (this term 
refers to grossly inaccurate estimates, as opposed to “jitter” 
that refers to random fluctuations around the true mean) rather 
than a manifestation of systematic error. 

IV. RESULTS 

From the description of the individual estimators in Section 
11, it should be clear that their performance is determined 
by a number of factors which encompass operating param- 
eters and signal characteristics (range gate length, ensemble 
length, pulse length or-equivalently-fractional transmitted 
bandwidth, noise level, mean velocity and velocity spread). 
Obviously, it is impossible to scan the entire multidimensional 
space defined by all these factors. Our approach was to estab- 
lish a few reference points in the multidimensional space and 
then slice the space with planes (velocity spread versus factor 
under investigation) passing through the reference points. The 
following conventions were adopted. 

Instead of velocities, the estimators were used to calculate 
the mean target shift (displacement) between successive 
pulse emissions. All the simulation results reported here 
were based on fixed true mean shift equal to 0.25 wave- 
lengths of the pulse’s central frequency component. The 
simulations were also repeated for true shifts covering the 
full nonaliased range (0.0- 0.5 wavelengths), but those 
results are not presented here due to space limitations. 
To investigate the effect of velocity spread, in all cases 
examined the spread of individual shifts around the true 
mean shift was varied from 0-50% in six equally-spaced 
steps (i.e., individual shifts uniformly distributed in the 
range O % , + /  - 5 % , + /  - lo%,+/  - 15%,+/ - 20% 
and +/ - 25% of the true mean shift). 
The performance of the estimators was characterized in 
terms of their precision, which was defined as the standard 
deviation of their output expressed as a percentage of the 
true mean shift. In all cases, precision graphs were formed 
for each estimator using dash (crosscorrelator), dot (1D 
autocorrelator), solid (2D autocomelator) and daslddot 
(2D-DOP autocorrelator, the Doppler-only version of 
the 2D autocorrelator defined in (55) )  curves. Graphs 
documenting the effect of a particular factor were placed 
side-by-side to allow trends to be more easily appreciated. 

A. Range Gate Length 

The precision of the estimators under investigation is plotted 
as a function of the shift spread in Fig. 8 for range gate lengths 
equal to 1, 3, 5 ,  7, and 9 wavelengths of the pulse’s central 
frequency component. The fixed simulation parameters for this 
figure were: 20-dB fractional transmitted bandwidth of 0.75 
(the corresponding 20-dB pulse length was 5.2 wavelengths); 
SNR of 20 dB; ensemble of 8 pulses. 

From the graphs of Fig. 8, it is apparent that all estimators 
benefit from longer range gates, with improvement factors 
which depend on somewhere between the square- and cubic- 
root of the fractional increase in the range gate length. At 
the same time, the precision curves of all estimators exhibit 
an almost linear deterioration as the shift spread becomes 
higher. This pattern suggests that in a real-world nonaxial flow 
situation where-unlike the present simulation set-up which 
models axial flow-extending the range gate results in a higher 
velocity spread, the benefits of a longer range gate would 
be partially offset by the deterioration due to the presence 
of multiple velocity components. Consequently, the optimum 
range gate length would depend on a combination of factors 

(VSD-DOP) = ’ 2 

1 tan-1 
2rTS 

M-1N-2 \ 
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Fig. 8. Precision of the crosscorrelator, ID, 2D-DOP and 2D autocorrelator 
(dash, dot, dash/dot and solid curves, respectively) versus the shift spread 
(individual shifts uniformly distributed in the range +/ - 0, 5, 10, 15, 20 and 
25% of the true mean shift of 0.25A), for range gates of 1, 3, 5,  7 and 9A. 
The simulations were carried out using a 20-dB fractional bandwidth of 0.75, 
SNR of 20 dB and ensemble of 8 pulses. 

8 12 16 

such as the shear rate, angle of insonation, lateral beamwidth 
and scan plane thickness. 

As far as performance comparisons between the different 
estimators are concerned, the 2D autocorrelator and crosscorre- 
lator differ significantly only for the case of a range gate equal 
to one wavelength. The poor precision of the crosscorrelator 
for this case, which is caused by spikes rather than jitter, 
suggests that this estimator is associated with a high proba- 
bility of false peaks for very short range gates. However, for 
all other cases, the 2D autocorrelator and crosscorrelator are 
nearly identical and clearly superior to the 1D autocorrelator. 
For example, the 2D autocorrelator and crosscorrelator can 
achieve better precision for a range gate of 3 wavelengths 
than the 1D autocorrelator for a range gate of 9 wavelengths. 

An insight into the source of performance gains for the 
2D autocorrelator can be obtained by comparing its precision 
curves with those of the 2D-DOP and 1D estimators. The 
consistently better performance of the 2D-DOP autocorrelator 
in comparison with the 1D autocorrelator indicates that the 
2D form of Doppler estimation (frequency averaging along 
both the depth and ensemble directions) is always superior to 
1D Doppler estimation (filtering of the I & Q signal along 
the depth direction followed by frequency averaging only 
along the ensemble direction). At the same time, the gradual 
convergence of the 2D and 2D-DOP autocorrelator as the shift 
spread becomes higher reveals that the explicit estimation of 
the mean RF frequency performed by the 2D autocorrelator 
is highly beneficial as long as there is no significant velocity 
spread, which tends to weaken the correlation between the 
mean Doppler and RF frequencies. 

B. Ensemble Length 

Fig. 9 plots the precision of the estimators under investiga- 
tion as a function of the shift spread for ensembles equal to 4, 
8, 12, and 16 pulses. The fixed simulation parameters for this 
figure were: 20-dB fractional transmitted bandwidth of 0.75 
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Fig. 9. Precision of the crosscorrelator, lD, 2D-DOP and 2D autocorrelator 
(dash, dot, d a d d o t  and solid curves, respectively) versus the shift spread 
(individual shifts uniformly distributed in the range +/ - 0, 5, 10, 15, 20 
and 25% of the true mean shift of 0.25 A), for ensembles of 4, 8, 12 and 16 
pulses. The simulations were carried out using a 20-dB fractional bandwidth 
of 0.75, SNR of 20 dB and range gate of 5 A.  

(the corresponding 20-dB pulse length was 5.2 wavelengths); 
SNR of 20 dB; range gate length of 5 wavelengths. 

The precision curves of Fig. 9 exhibit the expected square- 
root dependence on the ensemble length as well as the almost 
linear deterioration as the shift spread becomes higher, orig- 
inally observed in the previous subsection. Again, the 2D 
autocorrelator and crosscorrelator are nearly identical and 
outperform the ID autocorrelator by a significant margin. For 
example, the precision curves of the 2D autocorrelator and 
crosscorrelator for an ensemble of 4 pulses are better than the 
precision curve of the 1D autocorrelator for 16 pulses. The 
margin, however, decreases gradually for longer ensembles. 
This pattern is another manifestation of the fact that the 1D 
autocorrelator performs frequency averaging only along the 
ensemble direction and, therefore, requires a large number of 
pulses to achieve satisfactory performance. 

C. Signal-to-Noise Ratio 

The effect of noise on the performance of the estimators 
under investigation is documented in Fig. 10, which plots their 
precision as a function of the shift spread for SNRs of 20, 
15, 10, 5 and 0 dB. The fixed simulation parameters for this 
figure were: 20-dB fractional transmitted bandwidth of 0.75 
(the corresponding 20-dB pulse length was 5.2 wavelengths); 
range gate of 5 wavelengths; ensemble of 8 pulses. 

From the precision curves of Fig. 10 it can be readily seen 
that the 1D autocorrelator exhibits the highest sensitivity to 
noise, which becomes quite significant for SNRs < 10 dB. 
The precision curves of the 2D autocorrelator and crosscor- 
relator are barely indistinguishable for SNRs 2 10 dB, but 
the performance of the crosscorrelator deteriorates noticeably 
for lower SNRs indicating a reduced robustness to noise. 
Finally, it is interesting to note that the superiority of the 
2D autocorrelator over its simplified Doppler-only counterpart 
(2D-DOP estimator) is gradually reduced as the SNR becomes 
poorer. This trend implies that the Doppler and RF frequency 
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Fig. 10. Precision of the crosscorrelator, lD, 2D-DOP and 2D autocorrelator 
(dash, dot, dash/dot and solid curves, respectively) versus the shift spread 
(individual shifts uniformly distributed in the range +/ - 0,  5, 10, 15, 20 and 
25% of the true mean shift of 0.25 A), for SNRs of 20, 15, 10, 5 and OdB. 
The simulations were carried out using a 20-dB fractional bandwidth of 0.75, 
range gate of 5 X and ensemble of 8 pulses. 

fluctuations do not track each other closely in the presence 
of heavy noise and, therefore, under those circumstances the 
precision benefits offered by the RF estimation part of the 2D 
autocorrelator become marginal. 

D. Pulse Bandwidth 

Fig. 11 documents the effect of the transmitted pulse band- 
width on the estimators' precision in the presence of low 
and high noise. The simulations were designed to achieve 
constant axial resolution by considering four 20-dB frac- 
tional bandwidths (0.50, 0.75, 1.00 and 1.25) and select- 
ing the corresponding range gate lengths (2.2, 5.2, 5.8 and 
6.3 wavelengths) so that in all four cases the 20-dB ex- 
tent of the sample volume (measured by convolving the 
pulse envelope with the range gate) was equal to 8.5 wave- 
lengths. The low- and high-noise levels were selected to 
achieve SNR = 20 and 0 dB for the narrowest band- 
width considered. The SNRs for the other three-increasingly 
broader-bandwidths were obviously poorer (18.2, 17.0, and 
16.0 dB and -1.8, -3.0, and -4.0 dB for the low- and 
high-noise case, respectively, based on actual measurements) 
because the same amount of signal power was spread over a 
wider frequency range, while the noise level (power per unit 
of frequency) remained constant. In all cases, an ensemble of 
8 pulses was used. 

The results of Fig. 11 show that, under the specific con- 
ditions of this simulation, the 20-dB fractional bandwidth of 
0.75 represents the optimum choice for the ID autocorrelator. 
Based on the fact that the range gate corresponding to the 
optimum bandwidth was equal to the 20-dB pulse length for 
that bandwidth (5.2 wavelengths), it appears that the general 
PW Doppler guideline of matching the range gate to the 
pulse length [25] is also applicable to the 1D autocorrelator. 
Similar conclusions were reached by repeating the simulations 
with a variety of bandwidths and sample volume sizes. On 
the contrary, Fig. 11 shows that the performance of the 2D 
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Fig. 11. (Top): Precision of the crosscorrelator. lD, 2D-DOP and 2D 
autocorrelator (dash, dot, dash/dot and solid curves, respectively) versus the 
shift spread (individual shifts uniformly distributed in the range +/ - 0, 5, 
10, 15, 20 and 25% of the true mean shift of 0.25 A), for 20-dB fractional 
bandwidths of 0.50, 0.75, 1.00 and 1.25. The simulations were carried out 
using a fixed noise level which corresponds to SNR = 20 dB for the 
narrowest bandwidth considered and ensemble of 8 pulses. The range gate 
lengths where set equal to 2.2, 5.2, 5.8 and 6.3 A, from left to right, so that 
the 20-dB length of the sample volume was equal to 8.5 A for all bandwidths. 
(Bottom): As above, with a fixed noise level which corresponds to SKR = 0 
dB for the narrowest bandwidth considered. 

autocorrelator and crosscorrelator continue to improve as the 
bandwidth becomes broader (and, hence, more depth samples 
can be used while maintaining the same axial resolution), 
indicating that for these techniques the gains offered by 
longer range gates can overcome the losses due to poorer 
SNRs. 

Apart from the different trade-offs associated with each 
estimator when both the transmitted pulse bandwidth and 
the range gate length are adjusted to achieve a constant 
sample volume size, Fig. 11 provides confirmation for some 
observations made in previous subsections. More specifically, 
it is clear that the 2D autocorrelator is almost identical to 
the crosscorrelator for high SNRs, but exhibits increased 
robustness under heavy noise conditions. Also, the fact that the 
precision curves of the 2D and 2D-DOP autocorrelators in the 
bottom part of Fig. 11 are indistinguishable demonstrates that 
the presence of heavy noise disrupts the correlation between 
Doppler and RF frequencies. 
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V. CONCLUDING REMARKS 

This paper has examined a novel technique, referred to as 
the 2D autocorrelator, which derives the mean axial velocity at 
each location of the range gate by estimating both the Doppler 
and RF mean frequencies-in other words by performing a full 
evaluation of the Doppler equation. In addition to a descrip- 
tion of the 2D autocorrelator, two other established velocity 
estimators were studied: the conventional 1D autocorrelator, 
as a representative of phase-domain techniques and because 
it is the standard color flow mapping method in commercial 
scanners, and the crosscorrelator, as a representative of time- 
domain techniques and because a simpler form of it (1-bit 
crosscorrelation) has been commercially adopted [6], [23]. 
Section I1 described all three estimators in a unifying manner, 
and highlighted similarities and differences. 

In brief, it was shown that the 1D autocorrelator derives 
a mean Doppler frequency estimate which is mathematically 
equivalent to the centroid of the measured 2D (Doppler versus 
RF frequency) spectrum at the column corresponding to the 
RF sinusoid used in the demodulation process, while the 2D 
autocorrelator evaluates the mean Doppler frequency based on 
the entire 2D spectrum. Alternatively, and in more practical 
terms, the two estimators can be thought of as following 
different averaging strategies for Doppler estimation; the 1 D 
autocorrelator averages the frequency estimates along the 
ensemble axis only, since the information along the depth axis 
is used solely for filtering purposes, while the 2D autocor- 
relator performs frequency averaging along both directions. 
A second difference is that, unlike the 1D autocorrelator, 
the 2D autocorrelator performs explicit estimation of the 
mean RF frequency of the data inside the range gate and, 
therefore, can reduce the variance of the velocity estimates 
by compensating for the random RF frequency fluctuations 
which cause similar fluctuations in the Doppler frequency. 
The simulations results of Section IV showed that the RF 
estimation part of the 2D autocorrelator offers substantial 
benefits for signals with modest velocity spread and good 
SNR, but these benefits becomes marginal in the presence 
of significant velocity spreads andor heavy noise, which 
weaken the correlation between Doppler and RF fluctuations. 
Apart from improving the precision of velocity measure- 
ments, explicit estimation of the mean RF frequency can 
potentially overcome the bias effect that frequency-dependent 
attenuation has on the 1D autocorrelator [48]. This topic 
is briefly addressed in the experimental companion to this 
paper [49]. 

The material of Section I1 also showed that the 2D auto- 
correlator and the crosscorrelator share a number of common 
features. Both estimators are explicitly based on the same 
model (the gradual translation of the backscattered echoes with 
respect to previous pulse transmissions, due to the changing 
distance between the transducer and groups of moving scat- 
terers) and make extensive use of the information along the 
depth direction. It was also shown that, under a set of specific 
conditions (a single velocity component and a backscattered 
signal whose phase does not exhibit discontinuities), the two 
estimators are mathematically equivalent. 

The performance of the three velocity estimators was as- 
sessed by means of extensive simulations which documented 
the effect of the velocity spread, range gate length, ensemble 
length, noise level and transmitted bandwidth on estimation 
precision. In summary, the 1D autocorrelator was found to 
be consistently inferior to the other two estimators examined 
here, with particularly poor performance for short ensembles 
and low SNRs. It was also noted that among the various 
combinations of pulse and range gate lengths which result in 
the same axial resolution, matching the range gate to the pulse 
length represents the optimum choice for the 1D autocorre- 
lator. As far as the 2D autocorrelator and crosscorrelator are 
concerned, it was repeatedly observed that they were almost 
identical under low-noise conditions, but the 2D autocorrelator 
was shown to offer noticeably better robustness in the presence 
of heavy noise. The 2D autocorrelator is further examined, on 
an experimental basis, in the companion to this paper [49]. 

Based on the fact that the 2D autocorrelator and the cross- 
correlator rely on the full 2D data set of backscattered echoes 
and produce comparable results, we postulate that the primary 
factor in predicting the performance of a velocity estimator 
is the information content of the input signal. This statement 
does not imply that all estimators applied to the same input 
will produce identical results; simply that, when estimators 
are grouped together on the basis of their performance, the 
type of input data is the most relevant criterion. Under these 
circumstances, practical issues such as the sampling rate 
or the number of operations per estimate become perhaps 
more important than minor performance differences. From this 
point of view, the proposed estimator appears to represent a 
favorable option, since it can be applied to the demodulated 
(baseband) signal and requires evaluation of only two lags of 
the 2D autocorrelation function. 

APPENDIX A 

Assuming that the analytic-form array ?(m, n)  has a size of 
M x N ( m  = O , l , . . . , M  - 1 and n = O,l , . . . ,N - l), its 
autocorrelation function is given by 

M -m’-1 N -n’- 1 

The 2D autocorrelation function is also the inverse 2D Fourier 
transform of the power spectrum. 

M/2-1  N/2-1  
+(m’,n’) = p(:, $ ) e j ( 2 r m m r / M )  

m=-M/2  n=-N/2  

(A2) 

where m / M ,  n / N  correspond to the discrete normalized fre- 
quencies f and F, respectively. 

Differentiation of (A2) with respect to the m’ variable gives 

e j  (2rnn’ / N )  

(‘43) e j ( 2 r m m ‘ / M )  j ( 2 7 r n n f / N )  
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which, for m‘ = n’ = 0, is equal to 

By using (A4) and (A2) and taking into account the corre- 
spondence between m/M, n / N  and f ,  F,  it is straightforward 
to verify that the following expression 

is the discrete equivalent of (9). This expression can be further 
simplified by taking into account the fact that the autocorre- 
lation of a complex wide-stationary process is Hermitian [21, 
ch. 6.11, i.e. 

By expressing the autocorrelation function in Cartesian and 
polar coordinates 

?(m’, n’) = Re[?(m’, n’)] + j Im[?(m’, n’)] 

(A7) - - n’)leje(m’,n’). 

Equation (A6) implies that: 

The real part and magnitude Re[y(m’, n’)], IT(m’, n’)l 
are even functions of m’,n’ and therefore their partial 
derivatives at (0, 0) are equal to zero. 
The imaginary part and phase Im[T(m’, n’)], O(m’, n’) are 
odd functions of m’, n’ and therefore their values at (0, 
0) are equal to zero. 

Based on these properties, (A5) becomes 

which, for a small m’ # 0, can be approximated by 

1 O(m’,O) - O(0,O) 1 O(m’,O) 
(‘49) -~ - - 

21r m‘ ( f )  e! g m’ 

or, by using the smallest available lag value m’ = 1 

In a similar manner, it can be shown that the discrete equiv- 
alent of (1 0) can be approximated by 
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