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A New Method for Estimation
of Velocity Vectors

Jørgen Arendt Jensen, Member, IEEE, and Peter Munk

Abstract—The paper describes a new method1 for de-
termining the velocity vector of a remotely sensed object
using either sound or electromagnetic radiation. The move-
ment of the object is determined from a field with spatial
oscillations in both the axial direction of the transducer
and in one or two directions transverse to the axial direc-
tion. By using a number of pulse emissions, the inter-pulse
movement can be estimated and the velocity found from
the estimated movement and the time between pulses. The
method is based on the principle of using transverse spa-
tial modulation for making the received signal influenced
by transverse motion. Such a transverse modulation can be
generated by using apodization on individual transducer
array elements together with a special focusing scheme. A
method for making such a field is presented along with a
suitable two-dimensional velocity estimator. An implemen-
tation usable in medical ultrasound is described, and simu-
lated results are presented. Simulation results for a flow of
1 m/s in a tube rotated in the image plane at specific angles
(0, 15, 35, 55, 75, and 90 degrees) are made and character-
ized by the estimated mean value, estimated angle, and the
standard deviation in the lateral and longitudinal direction.
The average performance of the estimates for all angles is:
mean velocity 0.99 m/s, longitudinal S.D. 0.015 m/s, and
lateral S.D. 0.196 m/s. For flow parallel to the transducer
the results are: mean velocity 0.95 m/s, angle 0.1�, longi-
tudinal S.D. 0.020 m/s, and lateral S.D. 0.172 m/s.

I. Introduction

It is a common problem to measure the velocity of a
moving object, when the object is observed with a prob-

ing field. Equipment of this kind is used in medical ultra-
sound to measure the velocity of blood flow noninvasively.
Here an ultrasound beam is emitted by a transducer. The
ultrasound field then interacts with the blood and gives
rise to a scattered field, which is received by the trans-
ducer. Emitting a second pulse then yields a received signal
that is displaced in time compared to the first signal, due
to the movement of the blood between pulse emissions.
Repeating this a number of times yields signals suitable
for velocity estimation. Sampling the received response at
a fixed time after each pulse emission, corresponding to a
fixed depth in tissue, results in an audio signal, with an
audio frequency proportional to both the blood velocity
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along the ultrasound beam [1] and the emitted puls’ RF
frequency. This was used by Baker [2] to devise a system
for displaying the velocity distribution at the depth of sam-
pling. A Fourier transform of the sampled signal will yield
the distribution as frequency is proportional to velocity.
This technique also can be used to display velocity images
by estimating the mean velocity at a particular depth, as
described by Kasai et al. [3]. Here the ultrasound beam is
emitted a number of times in one distinct direction, and
the velocities along that direction are found by sampling
the received signal for a number of depths and then es-
timate the mean velocities for the corresponding depths.
The beam direction is then changed. The measurement
procedure is repeated, and the velocities are found along
the other directions. An image of velocity is then made,
and continuously updated over time. The velocity can be
found through an autocorrelation approach, as described
by Kasai et al. [3] and Namekawa et al. [4]. Another tech-
nique is to use cross-correlation as described by Dotti et
al. [5] and Bonnefous et al. [6]. A general description of ul-
trasound velocity estimation systems can be found in [1].

Radar systems also use the pulse-echo principle for esti-
mating velocity of a moving object. A series of radar pulses
is emitted, and the received signals are recorded. The sig-
nals from a specific distance are compared, and the veloc-
ity is calculated from the movement of the object between
pulses, the speed of light, and the time between pulse emis-
sions. This is, for example, used for finding the velocity of
airplanes, missiles, or ships, described by Skolnik [7].

The pulse movement principle has also been employed
in sonar for finding the velocity of different objects. This is
done by the same methods as mentioned above for medical
ultrasound scanners with appropriate adaptations.

A major problem with these velocity estimation tech-
niques is that only the velocity component in the beam
direction, i.e., toward or away from the transducer, can
be found. Velocity components perpendicular to the beam
propagation direction cannot be measured. A number of
approaches have sought to remedy this in diagnostic med-
ical ultrasound. Two consecutive ultrasound images are
measured in the speckle tracking approach as described by
Trahey et al. [8]. The movement of a regional pattern from
one image to the next is found through two-dimensional
cross-correlation, and the velocity vector for the region is
determined from the displacement of the region and the
time between the images. The technique needs two images,
which makes data acquisition slow, and precludes the use
of averaging. The image acquisition also makes this tech-
nique difficult to use for full three-dimensional velocity es-
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timation. The two-dimensional correlation necessitates a
high number of calculations, and erroneous velocities can
evolve due to false maxima in the correlation function [9].

Another approach is to use two transducers or aper-
tures emitting two beams crossing each other in the region
of interest, whereby the velocity can be found in two in-
dependent directions [10]. The velocity vector can then be
found through a triangulation scheme. The variance, and
hence the accuracy, of the transverse component of the
velocity is affected by the angle between the two beams.
The small angle between beams at large depths in tissue
results in a high measurement variance, i.e., a low preci-
sion. The use of two transducers or a single large array
also makes probing between the ribs of a person difficult
and can result in loss of contact for one of the transducers.

Other techniques like beam-to-beam correlation [11]
and changes in signal bandwidth [12] have been suggested.
None of these techniques have, however, attained a perfor-
mance that warrants commercial implementation.

The paper proceeds along the following lines: Section II
introduces a new method for vector velocity estimation
based on the observations from the introduction. The
method uses a special probing field, and how to produce
such a field is detailed in Section III. A suitable estima-
tion algorithm for finding the vector velocity is described
in Section IV, and a simulation of the performance is given
in Section V.

II. A New Method for Estimation of

Vector Velocity

The current systems estimate the velocity from the cor-
relation between consecutively received signals. This is
possible because the received signals have an oscillatory
nature, which makes it possible to perform the phase-shift
estimation of the autocorrelation approach or the time-
shift estimation of the cross-correlation approach. The
phase shift estimation is particularly efficient because it
only needs one complex set of samples for each pulse-echo
line to find the velocity magnitude and sign. Very few cal-
culations (seven per sample) are needed for the estimation
of the velocity [1]. The measurement of this set of samples
can be done directly on the radio frequency data by just
taking a sample at the depth of interest for the in-phase
signal and a second sample 1/(4f0) seconds later for the
quadrature signal [1], [13]. Here f0 is the center frequency
of the emitted pulse. Velocity estimation is, thus, possible
from the in-phase and quadrature samples, when they em-
anate from a signal with oscillations in the direction of the
velocity component.

These two observations make it, in principle, possible to
devise a measurement set-up for finding the velocity vec-
tor. A probing field is generated with oscillations in each
direction for which the velocity component is of interest.
Measurements of the in-phase and quadrature signals are
then made for each pulse emission. These measurements
are then used by an estimator to yield the velocity com-
ponents in the preferred directions, thereby obtaining the

velocity vector [14].
An illustration of the signal generation in a traditional

velocity estimation system is shown in Fig. 1. An 8 cy-
cle, f0 = 3 MHz pulse is used for emission, and Gaussian
apodization of the transducer and delay focusing are used
during transmission and reception for generating the field.
A snapshot of the received voltage at a fixed time is shown
in the upper left graph. The graph shows the voltage re-
ceived from the transducer, when a single scatterer is at
the position indicated in the graph at the time of the snap-
shot. Dark areas correspond to negative voltages and light
areas to positive voltages. Gray corresponds to zero. Thus,
it is a depiction of the voltage that will result from sam-
pling at the time of the snapshot. A moving scatterer will
traverse the field and give rise to a sampled signal that
is a function of the spatial field, the sampling time, and
the scatterer’s velocity. The dark lines indicate the voltage
when traversing the field in the axial or the lateral direc-
tion. A purely axial velocity gives rise to a received signal
that oscillates. If the time between pulses is Tprf and the
scatterer’s axial velocity is vz, then the movement between
pulses is Tprfvz. At the center position this will result in
a sampled signal as shown in Fig. 2. Here the frequency of
the received signal is:

fz =
vz

λ/2
=

2vz

c
f0 (1)

where λ = c/f0 is the wavelength of the emitted pulse,
and c is the speed of sound. Note that it is a pulse-echo
measurement, hence λ/2 is used in (1). The frequency is:

fz =
|~v| cos θ

λ/2
=

2|~v| cos θ

c
f0 (2)

if the velocity is at an angle θ with respect to the di-
rection of the propagating ultrasound field. This also will
introduce a modulation of the received signal from the lat-
eral response of the field. For a purely transverse motion
(θ = π), a signal equal to the lateral response shown in
the top right graph of Fig. 1 will be received, and no ve-
locity can be detected because the frequency spectrum of
the sampled signal is centered around zero frequency.

In order to make the sampled signal influenced by trans-
verse motion, a lateral modulation of the field must be in-
troduced. This is shown in Fig. 3 for an ideal field with an
8-cycle axial oscillation and a 4-cycle lateral modulation.
The received voltage at a fixed time as a function of spatial
position is shown along with the axial and lateral response
as a function of different scatterer positions. The sampled
response for a purely lateral movement is also shown in
graph in Fig. 4(d). It can be seen how the signal is af-
fected by the lateral movement, and it can, thus, be used
for velocity estimation. The frequency for this signal is:

fx =
vx

dx
(3)

where dx is the periodic distance of the lateral modulation
and vx is the lateral velocity. The received sampled sig-
nal is now affected by both axial and lateral movements
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Fig. 1. Ideal received voltage from a single scatterer as a function of spatial position for a traditional ultrasound system.
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Fig. 2. Received voltage from a single scatterer traversing the field
in the axial direction. The velocity vz is 0.25 m/s, Tprf is 100 µs,
and the transducer center frequency f0 is 3 MHz.

as shown in Fig. 4 for different velocity directions. This
demonstrates how the lateral modulation of the field re-
sults in a modulation of the received sampled signal, which
then contains information about both axial and lateral ve-
locity.

As mentioned in the introduction, the in-phase and
quadrature signals must be measured to find the sign of
the velocity. Four measurements then are needed in the
new approach for finding the direction and magnitude of
the velocity vector. Thus, it is necessary to employ a spa-
tial quadrature sampling in which the two measurements
give the in-phase and quadrature samples for the lateral
direction. This can be done by having two probing fields in
which the lateral modulation of the quadrature field is 90◦

phase-shifted compared to the in-phase field’s lateral mod-
ulation. This is generated by having one emit beamformer
and two receive beamformers working in parallel. Samples
are acquired from the two received signals at time 2d0/c
and 2d0/c + 1/(4f0) to obtain the four measurements for
both time and spatial quadrature sampling. These sam-
ples are then fed into the estimator to yield the velocity
components.

Another processing option is to make a compensation
for the axial velocity before determining the lateral veloc-
ity. The received lateral signals are affected by the move-
ment in the axial direction of the beam. The velocity in
the direction of the beam, therefore, is determined first,
and the effect of the axial movement is compensated for in
the received lateral signal, so that only transverse move-
ment gives rise to a variation in the compensated signal.
Standard techniques then can be used for finding the ve-
locity or the velocity distribution, as used in a conventional
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Fig. 3. Received voltage from a single scatterer as a function of spatial position from a field that is modulated in the lateral direction.

system for finding the axial velocity. Such an estimator is
described in Section IV.

The lateral modulation can be generated in a multitude
of ways. It can be done through the emitted field or from
processing the received signals in the receive beamformer.
It also can be made by a combination of transmit and
receive beamforming. The most flexibility is afforded by
mainly making the lateral modulation in the receive pro-
cessing, because it then can be dynamically adapted to a
long range of depths. The reception processing also makes
it possible to employ the method in passive sonar, where
the sound is received directly from the observed object.

The generation of the lateral modulation can be ob-
tained both from apodization of the transducer array ele-
ments and from the phasing of the beam. An example of
how such fields can be constructed is given in Section III.

A number of measurements must be obtained for esti-
mating the velocity. For two-dimensional velocity estima-
tion, the samples for the axial velocity are, in the imple-
mentation described in this paper, obtained using the tra-
ditional method by acquiring the in-phase and quadrature
samples. The transverse velocity component is obtained
from measurements using two laterally oscillating fields
that are 90 degrees phase-shifted relative to each other in
the lateral direction, thereby obtaining a spatial quadra-
ture sampling. The use of quadrature beams enables the

measurement of the magnitude as well as the sign of the
transverse velocity component.

A possible set-up for two-dimensional velocity estima-
tion is presented in Fig. 5. An emit beamformer generates
a field suitable for both axial and lateral velocity estima-
tion. Three beamformers are then used for generating the
received signals for estimating the axial and lateral veloc-
ities. The first beamformer (c) performs conventional fo-
cused beamforming for estimating the axial velocity using
phase shift estimation. The two other beamformers (a) and
(b) focus their beams to generate the in-phase and quadra-
ture signals for the lateral velocity estimation. One set of
measurements results from these two beams for each pulse
emission. The samples from the axial and lateral beams
are fed into the estimator to yield the velocity vector.

III. Field Generation

The transverse spatial oscillation of the field can be gen-
erated in a multitude of ways. Different strategies can be
applied, and the choice mainly is determined by the num-
ber of oscillations needed in the lateral direction. The lat-
eral modulation of the field can be generated by a single
array transducer using special beamforming during trans-
mit and/or receive. According to linear system theory, the
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Fig. 4. Received sampled signal for different axial and lateral ve-
locities: (a) ~v = (v, 0), (b) ~v = (cos 30◦, sin 30◦)v, (c) ~v =
(cos 45◦, sin 45◦)v, (d) ~v = (0, v). The velocity magnitude v is
0.25 m/s, fprf is 10 kHz, the transducer center frequency is 3 MHz,
and dx is 2 mm.

Fig. 5. Block diagram of the main components of the system.

transmit and receive beamforming can be interchanged to
generate the resulting field with similar lateral modulation
at a certain depth.

The lateral modulation can be generated through
apodization or through steering parts of the beams, so
that they interact and generate the lateral modulation,
or it can be a combination of the two. Apodization func-
tions control the vibration amplitude of the different array
elements. Many apodization schemes will lead to a trans-
versely oscillating field, the use of functions with two sep-
arate peaks across the aperture being a typical example.
The beam steering can be done either as plane-wave inter-
action or as other forms of focusing at or near the depth
for measuring the velocity vector.

A starting point for developing the lateral modulation
is to use the theory for continuous wave (CW) fields. Here

the radial pressure field variation in the far field region
is given by the Fourier transform of the emitting aperture
function [15]. Thus, it is possible to give a direct prediction
of possible aperture functions.

In designing the measurement situation, it must be
noted that the combined field characteristics depend on
both the transmitted field and the processing of the re-
ceived signal. For the far field approximation, where there
is no radial phase variation due to diffraction, the pulse-
echo radiation pattern can be found by multiplying the
transmit pattern with the receive sensitivity pattern.

A. Transmit Apodization Function

Traditional velocity estimation systems uses focusing of
the emitted field, and this pulsed field will change shape
as a function of depth. This change is not taken into con-
sideration when the velocity component in the radial di-
rection is calculated. To have a spatially oscillating field,
which only depends on the applied receive beamforming,
nondiffracting beams must be generated in transmit. This
ensures that the modulation pattern is independent of the
depth, and that the velocity components being measured
can become spatially uncorrelated.

Nondiffracting beams, thus, must be used in order to
generate a laterally modulated field with a constant spa-
tial frequency measured at a straight line across the beam,
orthogonal to the direction of propagation. If diffracting
beams are used, a constant spatial frequency can be mea-
sured along spherical lines of different radii dependent of
the depth, as changes in the phase-fronts of the pulse then
are avoided during propagation. Such phase changes will
affect the estimator as will curved phase fronts because the
lateral frequency is changed through the field for a curved
phase front.

Nondiffracting beams exist only in theory for infinitely
large apertures as can be seen from a solution to the lin-
ear wave equation [16]. In practice the beams of interest
are only diffraction-free for a limited range because of the
finite aperture used [17]. It has been shown [18], that the
fields generated by axicon transducers are similar to the
nondiffracting beams proposed by Durnin [16]. The axicon
focusing, originally presented by McLeod [19], uses a lin-
early increasing time delay function from the edge to the
center of the aperture. From a focusing point of view, the
axicon focusing creates phase coherence along a focal line,
whereas quadratic focusing has phase coherence at a point
in space. Axicon focus also is referred to as conical focus.

In the replica pulse method [20], the diffraction effects
for a plane piston are explained intuitively as the result of
the edge wave. The edge wave emanates from the abrupt
change in surface velocity at the aperture edge and can
be avoided by apodizing the aperture. As stated before,
the CW pressure far field can be calculated as the spatial
Fourier transform of the aperture’s velocity function. It is
known from signal analysis that the Fourier transform of
the Gaussian function is a Gaussian function. This intu-
itively indicates that the field from a Gaussian apodized



842 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 45, no. 3, may 1998

aperture most likely does not change shape in the near
field. When the far field is reached, it still maintains the
Gaussian shape with decreasing amplitude and increasing
main lobe width as the depth increases.

The amplitude of the CW radially-symmetric pressure
field for a Gaussian-apodized piston is [21]:

p(ρ, z) = A
σ(0)
σ(z)

exp
(
− ρ2

σ2(z)

)
(4)

where

ρ = (x2 + y2)1/2 (5)

and

σ(z) =
λ

πσ(0)

√
z2 +

π2

λ2 σ4(0). (6)

The distance from the center axis is ρ, A is a constant
of proportionality, λ is the wavelength in the surround-
ing medium, and σ(0) is the half-width of the amplitude
profile at the surface of the transducer. The z-axis is in
the propagation direction, and x, y are transverse to the
beam axis. The beam half-width is defined as the radial
distance ρe from the center of the disc at which the ampli-
tude drops to 1

e of its maximum. The field properties are
controlled by σ(z); and (6) shows that the maximum value
for p(ρ, z) exists for z = 0 and that it decays slowly with-
out any oscillations, thus preserving a Gaussian shape at
all depths. On the basis of these observations the transmit
apodization function is chosen to be Gaussian.

B. Receive Apodization Function

The receive beamforming must be designed to create
the lateral spatial modulation. Determining the receive
apodization function is somewhat more complicated, and
some direct relation between the transducer characteris-
tics and the field pattern is needed. The far-field CW ra-
diation can be calculated by a Fourier transform of the
transducer’s front-face velocity distribution [15]; this can
be employed in a derivation of the needed apodization pat-
tern. The derivation is based on one-dimensional observa-
tions. A comparison to a full three-dimensional pulse-echo
simulation with the derived field is presented later.

The relation between the front face velocity distribution
r(ξ) at the lateral aperture position ξ and the far-field
radiated pressure R(x) at the lateral field position x is [15]:

R(x) = k1

∞∫
−∞

r(ξ) exp
(
−j

2π
λz

xξ

)
dξ (7)

when using a far-field para-axial approximation. Here λ
is the wavelength, z is axial distance to the field point,
and k1 is a constant of proportionality that is neglected
during the following derivation. The integral corresponds
to a Fourier transform with a scaling of x by 1/(λz).

The lateral modulation must contain a number of os-
cillations and should be bounded to have a finite probing
field. The lateral modulation can thus be described by a
lateral oscillation multiplied by a rectangular windows as:

R(x) = rect(L) cos(2πfxx) (8)

where x is lateral distance, fx is spatial frequency in the
lateral direction, and rect(L) denotes a rectangular func-
tion of width L centered around x = 0. The distance be-
tween the lateral peaks is dx = 1/fx, and the width of the
field is L. The desired pattern thus consists of two terms
that should be generated by the transducer through the
front face apodization function.

Let the velocity distribution of the aperture r(ξ) be a
convolution of two functions r1(ξ) and r2(ξ):

r(ξ) = r1(ξ) ∗ r2(ξ) (9)

then the radiation pattern becomes:

R(x) = F {r(ξ)} = F {r1(ξ) ∗ r2(ξ)} = R1(x)R2(x)
(10)

when spatial Fourier transformation is denoted F , and ∗
denotes convolution. The Fourier transform of the rectan-
gular function of width L is:

r1(ξ) = F {rect(L)} =
L

zλ

sin
(
πξ L

zλ

)
πξ L

zλ

. (11)

A rectangular field, thus, can be obtained with an aperture
function of a sinc. The width of the field is determined by
the spacing of the zero crossings in the sinc function. The
first zero crossing ξ0 is at:

ξ0 =
zλ

L
. (12)

A wide rectangle thus gives a zero close to the peak at
ξ = 0 in the sinc function.

The Fourier transform of the cosine term is:

r2(ξ) =
1

2zλ

[
δ

(
ξ

zλ
+ fx

)
+ δ

(
ξ

zλ
− fx

)]
(13)

and combining this with (11) gives:

r(ξ) = r1(ξ) ∗ r2(ξ) =

L

2zλ

sin
(
π

(
ξ

zλ + fx

)
L

)
π

(
ξ

zλ + fx

)
L

+
sin

(
π

(
ξ

zλ − fx

)
L

)
π

(
ξ

zλ − fx

)
L

 .
(14)

Thus, to generate a lateral oscillation, the aperture must
have a velocity distribution consisting of two sinc func-
tions. This aperture function will give a field symmetric
across the acoustic axis of the aperture. The spatial fre-
quency fx of the lateral modulation is determined by the
distance between the peaks of the two sinc functions and is:

fx =
ξt

zλ
=

1
dx

(15)
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Fig. 6. Alignment of the pulses through delay focusing.

where ξt is the positive position of the maximum of the
sinc function.

The requirement for the velocity estimation is two simi-
lar fields phase shifted 90 degrees in relation to each other
in the lateral direction. During the receive process, it is
possible with an array transducer and a number of beam-
formers to generate a number of beams in parallel. Both
fields, therefore, can be generated in parallel through a
simple phasing and apodization before final summation.
The two fields can be generated by shifting them by a
phase angle θ and −θ, which tilts the beams by ±θ from
the z-axis [22]. Let a linear phase shift exp(jkθξ) be added
to an aperture apodization r(ξ) by:

rtilt(ξ) = r(ξ) exp(jkθξ). (16)

Here θ is the phase angle and k = 2π/λ is the wave num-
ber.

C. Calculation of Delay Factors

The derivation made above was based on CW theory.
Thus, a wave emanating from any point on the aperture
can interfere with a wave from any other point on the
aperture at any given position in space. The pulse length
is in theory infinitely long. In the pulsed mode the pulse
length is finite; therefore, the wave fronts must be aligned
to interfere at the point of interest. This is illustrated in
Fig. 6. For weak focusing this also has the consequence
that the relation made in the far field can be found at the
focus plane [22].

Conical focusing is used to direct the energy toward the
measuring point by aligning the phase fronts for the short
pulse used. The two probing beams needed for calculating
the lateral velocity component govern the choice of the
angles θ, α1 and α2 defined in Fig. 7. The cone angles
α1 and α2 are the angles between the wave fronts and
the transducer surface. The position of the center of the
oscillating field is controlled by θ.

With reference to Fig. 7, the array element delays are
calculated assuming plane wavefronts. The variable OF

α2

θ
γ1

α1

γ2

OF

EL

D

D

1

2

Z

X

B

C

FP

ZF

Array transducer

Array elements

Phase front

for wave Phase front

for wave

Fig. 7. Definition of geometry for finite plane wave focusing.

indicates the center position of the sinc-function with ref-
erence to the aperture center, ZF is the depth of interest,
EL is the distance from the center of the element to the
center of the aperture, and FP indicates the offset of the
focal point from the transducer center axis.

The following trigonometric relations are used:

sinα1 =
D1

EL
(17)

cosα1 =
B

OF
(18)

cos θ =
ZF

C
(19)

sin θ =
FP

C
(20)

tan θ =
FP

ZF
(21)

γ1 =
π

2
− α1 − θ (22)

cos γ1 =
B

C
(23)

cos
(π

2
− α

)
= sinα (24)

sin(a + b) = sin a cos b + cos a sin b. (25)

Using (18), (20), and (22) in (23) gives:

cos
(π

2
− α1 − θ

)
=

OF

FP
cosα1 sin θ (26)

and then applying (24) and (25) yields:

cosα1 sin θ

(
OF

FP
− 1

)
= sinα1 cos θ. (27)

Now α1 can be found using (21)

α1 = arctan
(

FP

ZF

(
OF

FP
− 1

))
. (28)
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The delay in time for the in-phase lateral receive beam-
forming can be found as

D1 =
1
c
·EL · sin

[
arctan

(
1

ZF
(OF − |FP |)

)]
(29)

where c is the speed of sound. The delays D2 for the
quadrature lateral receive beamforming are found for a
negative value of FP. Thus:

D2 =
1
c
·EL · sin

[
arctan

(
1

ZF
(OF + |FP |)

)]
.
(30)

The focus point FP for beam 1 and 2 must be chosen,
so that the radiation patterns are symmetrically placed
around the axis. Using the value:

FP = ±dx

8
(31)

gives beams that are shifted one quarter of the lateral pe-
riode relative to each other, which in turn makes them
suitable for the in-phase and quadrature measurements in
the lateral direction.

D. Calculation of the Lateral Modulation Frequency

The value to be used for FP can be found from (15) and
(31). Because the method used for finding (15) is based on
Fraunhofer far-field assumption, two other methods of cal-
culating the lateral wave length using geometric approxi-
mations are examined. This is done in order to ensure a
proper validation of the lateral wavelength.

First the wavelength is calculated from two plane waves
intersecting each other at an angle of 2α with α = α1 = α2.
The second approach uses the intersection of two spherical
waves. The actual lateral frequency will be in the range of
these two results, since both calculations are approxima-
tions to the correct three-dimensional pressure field.

The plane wave interference is shown in Fig. 8. The
plane waves are represented by:

p1(t, x, z) = P1 exp(−jωt) exp (jk (xnx + znz))
(32)

and

p2(t, x, z) = P2 exp(−jωt) exp (jk (znz − xnx))
(33)

where P1 and P2 are the pressure amplitudes of the waves,
and ω is its angular frequency. Here nx and nz are the
projections of the propagation direction to the respective
axis, i.e.:

nx = sinα

nz = cosα.

2α
α λ

α

d /2x

λ/(2 Cos α)

z

x
α α

Array transducer

Fig. 8. Intersection of two finite plane waves.

The resulting pressure pt is, assuming P0 = P1 = P2,

pt(t, x, z) = p1(t, x, z) + p2(t, x, z)
= P0 exp (−jωt) [exp (jk (xnx + znz)

+ exp (jk (znz − xnx)))]
= 2P0 exp (−jωt) exp (jkznz) cos (kxnx) .

(34)

This is a traveling wave in the z direction with an ampli-
tude modulation in the x direction. It must be noted that
the resulting wave travels with a phase velocity of:

cz,phase =
c

nz
. (35)

From the close-up in Fig. 8, the distance between lateral
peaks dx can be found from:

tanα =
λ

4 cos α
dx
4

(36)

yielding

dx =
λ

sinα
. (37)

The longitudinal wave length is:

λz =
λ

cosα
. (38)
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r

r

r
1

2

ϕ

P

OFOF

Array transducer

Array elements

Fig. 9. Geometry for interaction of spherical waves.

Using (28) for FP = 0 then:

dx =
λ

sin
[
arctan

(
OF
ZF

)] . (39)

Typically ZF > 2 · OF which results in an error of less
than 10% using:

sin
[
arctan

(
OF

ZF

)]
≈ OF

ZF
(40)

which gives a much simpler expression for calculating dx:

dx = λ
ZF

OF
. (41)

This result corresponds to that in (15).
For the derivation using spherical waves, two simple ra-

diators are placed at the centers of the sinc-functions. The
geometry is depicted in Fig. 9, and the gray dots indicate
the origin for the spherical waves. The pressures of these
two spherical waves can be written as:

p1 (r1) = A(r1) exp (−j (ωt− kr1))
p2 (r2) = A(r2) exp (−j (ωt− kr2)) .

(42)

The relation between r, r1, and r2 is:

r1 (r) = r2 + OF 2 − 2rOF cosϕ

r2 (r) = r2 + OF 2 + 2rOF cosϕ.
(43)

The total pressure at a given location r is:

ptot(r) = A(r1 (r)) exp (−j (ωt− kr1 (r)))
+ A(r2 (r)) exp (−j (ωt− kr2 (r))) . (44)

In order to simplify the problem, it is assumed that r �
2OF , thus:

r1 ≈ r −OF cosϕ

r2 ≈ r + OF cosϕ
(45)

and with A (r) ≈ A (r1) ≈ A (r2) the total pressure created
by the two interacting spherical waves becomes:

ptot(r) = A(r) exp(−jωt) ·
[exp (jk (r −OF cosϕ)) + exp (jk (r + OF cosϕ))]
= A (r) exp (−jk (ct− r)) ·

[exp (−jkOF cosϕ) + exp (jkOF cosϕ)]
= 2A (r) exp (−jk (ct− r)) cos (kOF cosϕ) .

(46)

The spatial frequency for the radial field is not constant.
The width ∆ϕ of the first lobe for the direction ϕ is defined
by the angles ϕ01 and ϕ02 of the zeros for cos(kOF cosϕ) =
0 given by:

kOF cosϕ01 =
π

2
kOF cosϕ02 = −π

2
. (47)

The width is:

∆ϕ = |ϕ01 − ϕ02| . (48)

The radial wavelength λr is governed by:

λr/2 = r ·∆ϕ. (49)

When kOF > 2OF � λ the angles will be very close to
π/2, and this small difference is denoted δ. Hereby:

ϕ01 =
π

2
− δ

ϕ02 =
π

2
+ δ

|ϕ01 − ϕ02| = 2δ

and

cos
(π

2
− δ

)
= sin δ

and

sin δ ≈ δ for |δ| � 1

then

∆ϕ =
π

kOF
=

λ

2OF
(50)

and the radial wavelength λr is given at the depth of in-
terest by:

λr = ZF · λ

OF
. (51)

This result corresponds to that in (41) and (51), show-
ing that the three methods for the stated conditions give
approximately the same results. The lateral wavelength
is thus determined by the depth, the distance between the
sinc peaks, and the fundamental RF frequency of the emit-
ted pulse.
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E. Field Simulation Example

Using a nonfocused Gaussian apodization for the trans-
mit beam and two sinc functions for apodization along
with axicon plane wave focusing for receive beamforming,
results in a field with a sensitivity that oscillates spatially
in the transverse direction. The receive beamforming, that
generates the lateral modulation by apodization and plane
wave focusing can be controlled dynamically by moving the
center and the scaling of the sinc function to control the
lateral wavelength and the number of oscillations. The ad-
vantage of this approach, instead of transmit focusing and
apodization, is the ability to obtain a controlled spatially
oscillating field for all depths.

The basic principle derived from the above was exam-
ined for a pulsed system using the Field simulation pro-
gram [23]. The form of the transmit field basically should
be independent of the depth because a traveling Gaussian
plane wave is nondiffracting [21]. A linear array transducer
with 64 elements with a width of 0.41 mm, height 5.0 mm,
and a pitch2 of 0.51 mm was used. An 8 cycle, 3 MHz pulse
was used in the simulation.

The emitted pressure fields for nonfocused and focused
Gaussian apodized transducers are shown in Figs. 10
and 11. The pulsed field is calculated for specific depths
to illustrate the evolution of the pulse shape as it travels.

To create a similar illustration of the receive sensitivity
in Fig. 12, the setup for the receive beamforming is used
in a transmit simulation. Hereby the construction of the
lateral oscillation can be illustrated, although this is only
created during receive beamforming. The apodization and
delay values used are shown in Fig. 13.

The number of zeros from the top of the sinc-function
to the edge is 5, and the offset (OF) of the sinc top from
the center of the tranducer is 18 times the pitch. The in-
terference of the two waves is clearly seen in Fig. 12.

The resulting pulse-echo sensitivity fields for a depth of
70 mm are shown in Fig. 14 for the in-phase and quadra-
ture channel, respectively. The displacement for the pres-
sure fields of one-fourth of the lateral wavelength can be
observed.

For the configuration chosen, dx is:

dx = λ
ZF

OF
=

1540
3 · 106

70
18 · 0.51

= 3.9 · 10−3 [m] .

The distance found by inspection of the actual generated
acoustical field was 4 mm (Fig. 15), which is in very good
agreement with the predicted value.

The sinc is calculated to have a zero at a fictional ele-
ment adjacent to the edge element in order to reduce edge
waves to a minimum. The number of zeros from the top of
the sinc to the edge of the aperture determines the band-
width of the transversal oscillation. Truncating the sinc
corresponds to multiplication with a rectangular window.
The effect on the field is a convolution of the ideal field
with the Fourier transform of the window.

2The pitch is the distance from the center of one element to the
center of the adjacent element.

Fig. 10. Emitted pressure field for unfocused Gaussian beam as a
function of depth.

To display the lateral wavelength, the envelope of the
axial direction is calculated for an emitted pressure field.
The envelope is calculated using the Hilbert transform of
the time signal. The lateral modulation at one point in
time in the middle of the pulse field are shown in Fig. 16.
The result is calculated for different numbers of zeros
(number of zeros = 3, 5, 7) in the sinc apodization func-
tion. This demonstrates the effect of the width of the sinc
function on the lateral field oscillation. A narrower main
lobe (more zeros) in the sinc function results in more os-
cillations with a higher amplitude in the lateral field. This
shows that a lateral modulation suitable for transverse ve-
locity estimation can be generated, which was the central
goal here. A broad, nondiffracting emit field was used, and
the lateral modulation was solely created through receive
focusing and apodization. This yields a fairly broad lateral
field, but this should not be seen as a central limiting fac-
tor for the approach. An emit focusing can be introduced
to narrow the probing field and make dx smaller, and this
is the topic of further research. More information about
the field generation can be found in [14].
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Fig. 11. Emitted pressure field for focused Gaussian beam as a func-
tion of depth.

IV. Estimation Algorithm

The estimator must determine both the axial and lateral
velocity. A compensation for the axial velocity must be
done before determining the lateral velocity. Therefore, the
axial velocity is determined first.

The signal from the axial beamformer is passed on to
the axial velocity processor, which samples the signal at
the time t = 2d/c, where d is the depth in tissue and c is the
speed of sound. A second quadrature sample is acquired at
time t = 2d/c + 1/(4f0), where f0 is the center frequency
of the emitted pulse. One set of samples is taken for each
pulsed field received, and the samples for line number i are
denoted x(i) and y(i). The first signal has the number i =
0. The axial velocity is found by using the equation [1], [3]:

vz = − c

4πTprff0
×

arctan

(∑Nc−2
i=0 y(i + 1)x(i)− x(i + 1)y(i)∑Nc−2
i=0 x(i + 1)x(i) + y(i + 1)y(i)

)
(52)

where Tprf is the time between pulse emissions from the
array, and Nc is the number of pulse-echo lines in the same
direction used in the estimator.

The axial velocity is used for selecting the samples from
the left and right signals from the two other beamformers.

Fig. 12. Emitted pressure field for two interacting finite plane waves
used for creating a transverse modulation.

10 20 30 40 50 60
−0.5

0

0.5

1

Element number

N
or

m
al

iz
ed

 a
po

di
za

tio
n center of aperture

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Element number

N
or

m
al

iz
ed

 ti
m

e 
de

la
y center of aperture

Fig. 13. Time delay and amplitude apodization values used on the
individual transducer elements for creating the lateral modulation
during receive beamforming.
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Fig. 14. Received voltage for a single scatterer as a function of its
position at a depth of 70 mm. The in-phase voltage is shown on the
top and the quadrature voltage is shown on the bottom.

Fig. 15. Voltage response as a function of lateral position for the
pulsed field used in the example.

The samples taken from the left signals, denoted gl(t), are
given by:

xl(i) = gl

(
2d
c
− 2vzTprf

c
i

)
(53)

so as to compensate for the influence from the axial move-
ment of the blood. Correspondingly, samples taken from
the right signals, denoted gr(t), is given by:

yr(i) = gr

(
2d
c
− 2vzTprf

c
i

)
. (54)

These samples enter the estimator given by:

vx = − c

2πTprffx
×

arctan

(∑Nc−2
i=0 yr(i + 1)xl(i)− xl(i + 1)yr(i)∑Nc−2
i=0 xl(i + 1)xl(i) + yr(i + 1)yr(i)

)
(55)
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Fig. 16. Lateral response with oscillations as a function of zeros in
the sinc apodization function.

where fx is the frequency of the laterally oscillating trans-
ducer field at the particular depth. Then vx is the trans-
verse velocity.

V. Performance

The functionality of the method is examined for two-
dimensional velocity vector measurement and is docu-
mented by simulations. The simulation is performed using
the impulse response method developed by Tupholme [24]
and by Stepanishen [25] in the implementation developed
by Jensen and Svendsen [23]. The high accuracy of this
approach, when compared to measurements, is described
in Jensen [26]. The paper showed that the simulated pres-
sure values were within 1% of the measured ultrasound
fields. The simulation approach is applicable for pulsed
fields and is used for three-dimensional modeling of the
response from a collection of scatterers.

The simulated situation is shown in Fig. 17. A vessel
of 10 mm diameter is placed 70 mm from the center of
the transducer array, i.e., on the axis of the transducer.
The vessel contains plug flow (all blood scatterers have
the same velocity), and the 15,000 scatterers in the ves-
sel have a Gaussian scattering amplitude distribution with
zero mean value and unit variance. This ensures fully de-
veloped speckle in the response from the blood model. The
simulation is done for constant velocity of 1 m/s and a
varying angle (θ) for the flow vector. The angles used are
0, 15, 35, 55, 75, and 90 degrees. The estimator uses 50
RF lines for finding an estimate and the experiment has
been repeated 20 times for each angle. The 64-element ar-
ray transducer specified in Section III-D was used during
the simulation.

Fig. 5 shows the implementation of the method applied
here for the measurement of blood velocity in two dimen-
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Fig. 17. Definition of axial and lateral velocity for the computer ex-
periment.

sions. It consists of a generator or pulser, 1; an emit beam
former, 2; a linear array ultrasound emitting transducer, 3;
a linear array ultrasound receiving transducer, 5; three re-
ceive beam formers, 6a, 6b, and 6c working in parallel and
receiving signals from the receiving transducer. The beam-
formed signals are fed into the estimator, 7; that calculates
the velocity vector. The pulser, 1, generates a pulsed volt-
age signal with a number of sinusoidal oscillations at a fre-
quency of f0 in each pulse, that is used in the emit beam
former, 2. The emit beam former, 2, is capable of indi-
vidually attenuating and delaying the signals to each of
the elements of the transducer array, 3. In this simulation
no delay is introduced during emission, and in Fig. 18 the
attenuation values are shown as a function of element num-
ber in the transducer. This is done to emit a broad field
that can be used for forming all three beams in parallel. A
linear array transducer is used for both emitting and re-
ceiving the pulsed ultrasound field. The emitted field from
the transducer is scattered by the blood in the blood ves-
sel, and part of the scattered field is received by the linear
array transducer. The signals from the individual elements
are passed on to two of the receive beam formers, i.e., 6a
and 6b in Fig. 5. The signals from the elements are indi-
vidually scaled in amplitude and individually delayed and
are finally summed to yield a single output signal from
each receive beamformer. The first receive beamformer,
6a in Fig. 5, generates the left signal and the second re-
ceive beamformer, 6b in Fig. 5, generates the right signal.
Fig. 13 shows both the delay values and the corresponding
amplitude scaling factors for both receive beamformers.
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e

Fig. 18. Amplitude scaling factors or equivalently, apodization, used
for the emit beam former.

The third receive beam former, 6c in Fig. 5, generates the
signal for estimating the axial component.

The result of the simulation is shown in Fig. 19. The
true velocity vectors are indicated by the small arrows.
The gray ellipses for each velocity vector estimate indi-
cate the standard deviations for both the axial estimation
and the lateral estimation, respectively. The lateral stan-
dard deviation is the semi-major axis, and the axial stan-
dard deviation is the semi-minor axis. The mean values of
the estimates are illustrated by the circles at the centers
of the ellipses. The average performance for all angles is:
mean velocity 0.99 m/s, longitudinal S.D. of the estimates
0.015 m/s and lateral S.D. of the estimates 0.196 m/s. For
flow parallel to the transducer the results are: mean veloc-
ity 0.95 m/s, angle 0.1◦, longitudinal S.D. 0.020 m/s, and
lateral S.D. 0.172 m/s.

The velocity estimation has only been done at a fixed
distance from the transducer in the simulation. Due to
the use of a nonfocused field, it is possible to dynamically
change the focusing of the three receive beam formers to
generate the spatially oscillating field at other depths for
the same emitted field, as was demonstrated in Section III.

The example described here only estimated the velocity
in a plane, but the method can be changed to give the full
three-dimensional velocity vector. A two-dimensional ma-
trix transducer must then be used as described by Smith
et al. [27]. The same emission field can be used because it
is unfocused. An extra set of receive beam formers must
then be employed to make the velocity estimation in the
y-direction perpendicular to both the z- and x-directions.

VI. Summary

A new method for velocity vector estimation has been
presented. It uses a single array transducer for measuring
the axial and transverse velocity, which makes it conve-
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Fig. 19. Resulting standard deviations for the estimated mean veloci-
ties. The true velocity vectors are indicated by the small arrows. The
gray ellipses for each velocity vector estimate indicate the standard
deviations for both the axial estimation and the lateral estimation,
respectively. The lateral standard deviation is the semi-major axis,
and the axial standard deviation is the semi-minor axis. The mean
values of the estimates are illustrated by the circles at the centers of
the ellipses.

nient to use a small aperture window. The axial and lat-
eral velocities are estimated, and the sign of the lateral
velocity is determined by using two receive beamformers.

The method uses a number of consecutive pulse emis-
sions and compares the received signals to minimize the
effects from media dependent distortions like attenuation
and refraction. The method thus only uses the difference
from pulse to pulse to determine the velocity.

Only two measurements are taken from each beam for
determining the lateral velocity, so that a very modest
amount of calculations must be performed to estimate the
transverse velocity. Employing a standard autocorrelation
approach makes the method robust in terms of noise in
the measurement process, since this estimator is unbiased
for white noise.

The method can be expanded to find the full velocity
vector by using a third beam former, then all the com-
ponents of the three-dimensional velocity vector can be
estimated.
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