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Velocity distributions in blood vessels can be displayed using ultrasound scanners by making a
Fourier transform of the received signal and then showing spectra in an M-mode display. It is
desired to show a B-mode image for orientation, and data for this have to be acquired interleaved
with the flow data. This either halves the effective pulse repetition frequency fprf or gaps appear in
the spectrum from B-mode emissions. This paper presents a technique to maintain the highest
possible fprf and at the same time show a B-mode image. The power spectrum can be calculated
from the Fourier transform of the autocorrelation function, and it is shown that the autocorrelation
function can be calculated for a sparse set of data where flow and B-mode emissions are interspaced.
Both short deterministic sequences of emissions and full random sequences can be used. The
dynamic range of the sparse sequence is reduced compared to a full sequence. Typically, a reduction
of 20 dB is found when using 66% of the data compared to using all data. The theory of the method
and examples from simulations of flow in arteries are presented. The audio signal can also be
generated from the spectrogram. © 2006 Acoustical Society of America. �DOI: 10.1121/1.2208428�
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I. INTRODUCTION

Medical ultrasound systems can be used for finding the
blood and tissue velocity within the human body.1–5 This is
done by emitting a pulse consisting of a number of sinu-
soidal oscillations, and then measuring the scattered signal
returned from the blood or tissue. The measurement is re-
peated a number of times, and data are sampled at the depth
of interest in the tissue, yielding one sample per pulse emis-
sion. The frequency of the received sampled signal is pro-
portional to the velocity of the object along the ultrasound
beam, and is given by5

fp =
2�v�cos �

c
f0, �1�

where v is the velocity vector, � is the angle between the
ultrasound beam and the velocity vector, c is the speed of
sound, and f0 is the center frequency of the emitted ultra-
sound pulse.

The velocity distribution for a given spatial position
over time can be found by focusing the ultrasound beam at
the point of interest. The received rf data are Hilbert trans-
formed to give the in-phase and quadrature component. The
data are sampled at the depth of interest to give the complex
signal y�i�, where i is the pulse emission number. A Fourier
transform on the sampled data gives the power spectrum,
which corresponds to the velocity distribution, and the short-
time Fourier transform displayed over time reveals the tem-
poral variation of the velocity distribution.

The sampled data used for determining the velocity dis-

tribution have a sampling frequency of
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fprf =
c

2d
, �2�

where d is the depth of interrogation. The maximum fre-
quency that can be correctly found is, thus, fmax� fprf /2, and
the maximum unambiguous velocity is

vmax =
c

2 cos �
·

fprf

2f0
. �3�

The Fourier transform of the data is performed on short
segments of data consisting of usually 128 or 256 samples
�pulse emissions� to capture the frequency variation over
time of the signal. A Hanning window is often applied on the
data, and a fast Fourier transform is then performed. An es-

timate of the power spectrum P̂y�f� of the sampled complex
signal y�i� for a rectangular window is

P̂y�f� =
1

N
��

i=0

N−1

y�i�exp�− j2�fi/fprf��2

, �4�

where i is the sample number, and N is the number of
samples in a segment.

The estimate has a significant variance given by6,7

Var�P̂y�f�� � Py
2�f�	1 + 
 sin 2�f/fprfN

N sin 2�f/fprf
�2� , �5�

where Py�f� is the true power spectrum. The variance is for
f �0, thus, on the order of the estimate itself, and this is seen
as speckle noise in the resulting spectral display.

Often a B-mode image should be shown at the same
time for orientation and selection of the point of interest, and

time must be spent on acquiring this image. This can either
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be done by acquiring the B-mode data interleaved with the
velocity data or by acquiring a full B-mode image over a
time interval. The first approach will only make every second
emission useful for velocity estimation, and this will reduce
the pulse repetition frequency by a factor of 2 and reduces
the maximum velocity vmax by a factor of 2. The second
approach introduces periods where no velocity estimation
can be made since data are not acquired, and the true velocity
variation therefore cannot be followed.

Several authors have addressed the problem. Kristoffer-
sen and Angelsen8 used data before the gap to design a filter
with roughly the same frequency content as the gap. Using
the filter on a Gaussian, random signal then generates data
that can fill the gap. The method, however, has to assume
that the flow is roughly constant, as a significant acceleration
will change the frequency content. Klebæk et al.9 used a
neural network to predict the evolution of the mean fre-
quency and the bandwidth of the spectrum, and used this to
make a parametric model for filling the gap. Again, the pre-
diction is based on previous data, and abrupt changes in fre-
quency content will make the gap filling wrong. Also, the
model might in certain instances not fit the data accurately.
Other techniques that take the instantaneous frequency con-
tent into account are, thus, needed.

The components in the measured signal will lie in the
audio range. Emitted frequencies f0 of 3 to 5 MHz and ve-
locities of 0.5 to 2 m/s at �=45° give frequencies fp of
1 to 9 kHz, which can be perceived by the human ear. The
sound of the measured signal is, thus, often played. This is a
problem in the second approach, where there are gaps in the
audio stream. This will easily be perceived by the human ear,
and the signal cannot be used for faithful audio reproduction.

II. VELOCITY ESTIMATION FOR SPARSE DATA
SETS

The method devised here acquires a sparse sequence of
sampled data, where flow and B-mode emissions are inter-
spaced. It then uses an autocorrelation estimator and a Fou-
rier transform for determining the velocity distribution. This
makes it possible to keep the highest attainable velocity
equal to the theoretical maximum, and at the same time ac-
quire a B-mode image using part of the sparse data sequence.
The method can also be used to reconstruct the audio signal
as described in Sec. II E. The limit on maximum velocity can
also be exceeded by using a cross-correlation estimator to
find the mean velocity and then adjusting the velocity distri-
bution according to this estimate. The details of the method
are described in the subsequent sections.

A. Power spectrum estimation

The power spectrum of a stochastic signal y�i� is for-
mally calculated from the Fourier transform of the autocor-

relation function Ry�k� as
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Ry�k� ↔ Py�f� = �
k=−�

�

Ry�k�exp�− j2�fk�T� , �6�

where �T is the sampling interval. An estimate of the auto-
correlation can be calculated by

R̂y�k� =
1

N − �k� �
i=0

N−k−1

y�i�y*�i + k� , �7�

when data are available for a segment of N samples and *

denotes complex conjugate. The estimate of the power spec-
trum is then calculated by applying, e.g., a Hanning window

on R̂y�k� and then performing a Fourier transform. A trade-
off between spectral resolution and spectral estimate vari-
ance can be selected by using a window shorter than 2N−1.
The velocity spectrum can thus be found, if a proper estimate
of the autocorrelation function can be determined.

B. Sparse data sequences

The autocorrelation calculated by �7� is found by corre-
lating all samples in the signal segment y�i� with a time-
shifted version y�i+k� of the signal. It is, however, possible
to calculate the correlation estimate, even if some of the
samples in the signal are missing. This would be the case if
B-mode emissions were interleaved with velocity emissions.
The correlation is then calculated with fewer values, and this
will result in an increased standard deviation of the estimate.
In general, the variance of the estimate is inversely propor-
tional to the number of independent values, which here is
proportional to N−k. Having M�k� missing values will in-
crease the variance by a factor �N−k� / �N−k−M�k��. Keep-
ing M�k� moderate compared to N will thus give a moderate
increase in variance. The overall variance of the spectral es-
timate will be determined by the lag values with the highest
variance, and therefore it should be ensured that M�k�
roughly has the same value for all k.

For a sparse sequence M�k� will in general depend on

the lag k, and it must be ensured that all lag values of R̂y�k�
can be calculated with a sufficient accuracy. The estimate of
the autocorrelation function is then

R̂y�k� =
1

N − �k� − M�k� �
i=0

N−k−1

y�i�y*�i + k� , �8�

where missing data in the signal are represented by a zero.
This equation assumes that only a fixed segment of data is
passed to the estimator.

It is also possible to use data from the next segment. The
estimate of autocorrelation function is then

R̂y�k� =
1

N − M�k� �i=0

N−1

y�i�y*�i + k� , �9�

since data for 2N samples are available. It is then possible to
get a more accurate estimate of higher lags in the autocorre-
lation function as more data are used, which improve the
accuracy of the final velocity estimate. The drawback is a

smoothing in time of the calculated power spectrum.
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It should also be noted that only the autocorrelation
function for positive lags needs to be calculated, since nega-
tive lags can be reconstructed from

R̂y�k� = R̂y
*�− k� . �10�

The power spectrum is then calculated using �6�, and the
final display is denoted the auto spectrogram.

The missing values in the sparse sequence can be used
for, e.g., B-mode emissions so that a B-mode image can be
acquired simultaneously with the velocity data. An example
of a sequence is

v v b v v b . . . ,

where v is a velocity emission, and b is a B-mode emission.
Overlapping for the different lags k is illustrated by

k=0 y�i� v v b v v b . . .
y�i+0� v v b v v b . . .

k=1 y�i� v v b v v b . . .
y�i+1� v b v v b v . . .

k=2 y�i� v v b v v b. . .
y�i+2� b v v b v v . . .

k=3 y�i� v v b v v b. . .
y�i+3� v v b v v b. . .

For each lag k the top line is the received signal sequence
and the next row is the lag-shifted version of the signal. A
value different from zero in the autocorrelation sum can be
calculated if a column contains vv. It can be seen that there
is overlap for all lags between velocity data, and all autocor-
relation values can therefore be calculated. For this sequence
66% of the time is spent on velocity data and 33% is spent
on B-mode data acquisition. For imaging to a depth of
15 cm, a pulse repetition frequency of 5 kHz can be main-
tained, and this gives a frame rate of 15 images/s for images
consisting of 100 emissions. Note that it is very important
that two adjacent velocity emissions are found in the se-
quence, since this ensures that the lag 1 autocorrelation can
be calculated and the maximum velocity range is thereby
maintained.

The frame rate can be lowered by inserting more veloc-
ity emissions between each B-mode emission, and the
B-mode frame rate can therefore easily be selected. Other
sequences can put more emphasis on the B-mode imaging to
increase frame rate at the drawback of an increased variance
of the spectral estimate. Some other sequences are

B-mode Flow

40% 60%: v b v v b . . .
50% 50%: v b v v b b . . .
57% 43%: v b v v b b b . . .
62% 38%: v b v v b b b v v b b b . . .

The interleaved emissions can also be used for color
flow mapping, which also can be found from sparse
sequences.10 A 50%-50% sequence can also be used to make
two spectral estimates at the same time with full velocity
range. Hereby the change in flow waveform can be studied

over, e.g., a stenosis.
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It is also possible to use fully random sequences, where
there is no deterministic repetition of the emission sequence.
The sequence could for example be determined by using a
white, random signal x�n� with a rectangular distribution be-
tween zero and one. The determination of whether a B-mode
or flow emission should be made is determined by

e�n� = �x�n� � Pf� , �11�

where e�n�=1 indicates a flow emission and e�n�=0 indi-
cates a B-mode emission, and Pf is the probability of flow
emission. The ratio between flow and B-mode emission is
then determined by Pf and PB=1− Pf, respectively. It has to
be ensured that the autocorrelation can be found for all lags
as explained above. The advantage of this approach is that
noise appearing in the power spectrum due to a deterministic
emission sequence can be spread out over the full spectrum
for a random emission sequence. Another advantage is that
the time division between flow estimation and B-mode im-
aging can be precisely determined using Pf.

C. Averaging rf data

The pulse emitted for velocity estimation will in general
have a number of sinusoidal oscillations to keep the band-
width small and increase the emitted energy. The received
signal is then correlated over the pulse duration, and apply-
ing a matched filter to increase the signal-to-noise ratio will
increase the correlation to a duration of roughly two pulse
lengths. These data can also be used when calculating the
autocorrelation as

R̂y�k� =
1

�N − �k� − M�k��Nr
�
j=0

Nr−1

�
i=0

N−k−1

y�j + Jd,i�

�y*�j + Jd,i + k� , �12�

where j is the rf sample index, Jd is the index for the depth of
the range gate start, and Nr is the number of rf samples to
average over. Averaging over several rf samples will in gen-
eral lower the variance of the estimated autocorrelation func-
tion and thereby of the spectral estimate.11

It is also possible to use data from the next segment. The
estimate of the autocorrelation function is then

R̂y�k� =
1

�N − M�k��Nr
�
j=0

Nr−1

�
i=0

N−1

y�j + Jd,i�y*�j + Jd,i + k� ,

�13�

since data for 2N samples are available. It is then possible to
get a more accurate estimate of higher lags in the autocorre-
lation function as more data are used, which improves the
accuracy of the final velocity estimate.

To get an unbiased estimator, it can be beneficial to com-
pensate for the windowing of the received data in the esti-
mate of the autocorrelation function. This is done by

R̂y�k� =
1

Nw�k� �
j=0

Nr−1

�
i=0

N−1

y�j + Jd,i�y*�j + Jd,i + k� , �14�
where Nw�k� is the compensation factor given by
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Nw�k� = �
i=0

N−1

s�i�w�j,i�w�j,i + k�s�i + k� . �15�

Here, w�j , i� is the two-dimensional window employed on
the rf data and s�i� is the sparse sequence which contains a 1
for a velocity emission and 0 for a B-mode emission. In this
paper a separable window w�j , i� is used, with a rectangular
weighting in the axial direction and a symmetric Blackman
window across pulse emissions.

D. Stationary echo canceling

The measured signal will often contain large signal com-
ponents around low frequencies emanating from the tissue,
especially near the vessel wall. This stationary signal must be
removed, since it obscures the blood velocity signal and
make its spectral visualization difficult. This can be done
either in the time or the frequency domain. The first ap-

TABLE I. Standard parameters for transducer and femoral flow simulation.

Transducer center frequency f0 5 MHz
Pulse cycles M 4
Speed of sound c 1540 m/s
Pitch of transducer element w 0.338 mm
Height of transducer element he 5 mm
Kerf ke 0.0308 mm
Number of active elements Ne 128
rf lines for estimation N 256
rf samples for estimation Nr 32
Corresponding range gate size 123 mm
Sampling frequency fs 20 MHz
Pulse repetition frequency fpr f 15 kHz
Radius of vessel R 4.2 mm
Distance to vessel center Zves 38 mm
Angle between beam and flow � 60°
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proach is to take the mean value of the signals and subtract
that. The mean signal as a function rf sample number j is
found from

ysta�j� =
1

�N − M�0�� �i=0

N−1

y�j,i� , �16�

where ysta�j� is the estimated stationary signal. Missing rf
signals are replaced by zeros in the sum. The estimated
stationary signal is then subtracted from y�j , i� to remove a
fully stationary component. This should be done before
the autocorrelation function is calculated.

This processing can also be performed in the frequency
domain. Here, frequency components around f =0 Hz are set
to zero in the spectrum to remove the stationary component.
The cutoff frequency in the spectrum should be determined
from the velocity of the tissue surrounding the blood vessel
using �1�. This can be used as a supplement to �16�, since
such tissue motion often is encountered for in vivo measure-
ments.

For strong tissue motion in the surrounding tissue �16�
might not give a satisfactory suppression of the low-
frequency tissue signal. An increased attenuation can then be
attained by fitting a higher order polynomial to the sparse
data and then subtracting this from the data. A first-order
approach was suggested in Ref. 12. Higher order polynomi-
als of order Np can be fitted using a least-squares approach,
where the criterion

Ej = �
i=0

N−1 
y�j,i� − �
k=0

Np

ak · ik�2

�17�

is minimized like in MATLAB’s polyfit routine for each depth
corresponding to j. Here, ak are the polynomial coefficients.
The polynomial values are then subtracted from the sparse
signal to remove the slowly varying tissue signal as

FIG. 1. �Color online� Comparison of
different spectrograms for peak systole
in the femoral artery at T=0.1 s in Fig.
2. The top graph shows the normal
spectrogram calculated for a single rf
sample per emission and for using av-
eraging over two pulse lengths. The
lower graphs also show the spectro-
gram for the autocorrelation method
using the full data and a 1:2 �v v B�
sequence.
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ycan�j,i� = y�j,i� − �
k=0

Np

ak · ik, �18�

where ycan�j , i� then is used in the estimation of the auto-
correlation function. An example of this approach is
shown in Sec. III A.

E. Audio reproduction

The audio signal can be regenerated from the estimated
autocorrelation function. An appropriate model for the audio
signal y�n� is given by

y�n� = h�n;n� � e�n� , �19�

where h�n ;n� is a time-varying filter impulse response at
time index n and e�n� is a Gaussian, white random signal.
Here, e�n� models the many random and independent red
blood cells in the vessel; h�n ;n� models the velocity spec-
trum at the given time. The filter is time varying, since the
velocity and thereby frequency content varies over the car-
diac cycle. The autocorrelation of this is

Ry�k;n� = Rh�k;n� � Re�k� = Rh�k;n� � Pe��k�

= PeRh�k;n� ↔ Pe�H�f ;n��2, �20�

where Pe is the power of the blood scattering signal and
H�f ;n� is the Fourier transform of h�n ;n�. The linear phase
impulse response of the filter can then be found from

hl�k;n� = F−1
�F
Ry�k;n��� = F−1
�Pe�H�f ;n��� , �21�

where F
 � denotes Fourier transform and F−1
 � inverse
Fourier transform. A window can be applied to the impulse
response to reduce edge effects. It is also appropriate to mask
out small amplitude values in the frequency domain, since

this most probably is noise from the reconstruction process.

J. Acoust. Soc. Am., Vol. 120, No. 1, July 2006 Jørgen A
The phase of the filter is neglected and only a linear
phase version is reconstructed. A minimum phase version
could be reconstructed using a Hilbert transform, but this is
of no consequence since it is a stochastic signal that needs to
be made. The final signal is made by convoluting hl�k ;n�
with a Gaussian, white random signal as in Ref. 8. This will
be the audio signal for a given time segment, and this signal
should be added to signals from other segments properly
time aligned. To avoid edge effects, a window is applied on
the signal segment before addition.

F. Increasing the maximum velocity

The maximum velocity that can be estimated is re-
stricted by �3� due to aliasing. This is really not a restriction
on the maximum velocity, but on the widest spread of ve-
locities, where the distance between the lowest and highest
velocity at any given time must be less than

2vmax =
c

2 cos �

fprf

f0
. �22�

Estimating the mean velocity and adjusting the spectrum to
lie around this velocity can therefore increase the maximum
velocity range as suggested in Ref. 13.

The mean velocity can be estimated by using the cross-
correlation approach developed in Refs. 14 and 15. Two or
more rf lines are then cross correlated and the shift in time

FIG. 2. Normal spectrogram �top� us-
ing a single sample per emission, rf-
averaged spectrogram, and new
method �bottom� for simulated flow in
the femoral artery using the full data
set.
between them found. This will yield the mean velocity of the
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flow. The center of the spectrum is then offset to lie around
this mean frequency.

The same data as for the spectral estimation can be used
if a narrow pulse is emitted. The spectrum will be widened
due to the wide bandwidth of the pulse, but this can be
avoided by filtering the received rf data with a narrow-band
pulse before calculating the autocorrelation function. This
will narrow the bandwidth and the velocity spectrum width.

G. Directional focusing

Data beam formed along the flow direction as described
in Ref. 16 can also be used for the flow estimation. The

received data then track the movement of the scatterers, and
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a single or narrow distribution of velocities is then found.
This will give a spectrum that is narrower than for taking
data out at a range of depths.

III. RESULTS

The method is investigated using simulated data, where
the exact result of the velocity estimation is known. Hereby
both the traditional spectrogram and the new auto spectro-
gram can be calculated.

The FIELD II program17,18 was used for the simulation.19

The Womersley model20,21 for pulsating flow in a vessel was
used for generating realistic flow data from the femoral ar-

FIG. 3. Deterministically sampled
spectrograms using different ratios be-
tween B-mode and velocity emissions.
The emission sequence can be seen in
the title, where 1 denotes a flow emis-
sion and 0 a B-mode or missing emis-
sions. The graphs from top to bottom
show results, when reducing the time
spent on velocity emissions.
tery. This artery was selected since the flow is highly pulsat-
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ing, and it will therefore reveal if the estimator has problems
with following rapid variations in velocity. A linear array
transducer with 128 elements was used with a Hamming
apodization in both transmit and receive. Other parameters
for the simulation can be seen in Table I. The number of
point scatterers was 43 468 and the stationary tissue outside
the vessel had a scattering amplitude 100 times higher than
inside the vessel to mimic the higher scattering of tissue. The
sampling frequency for the simulation was 100 MHz, but the
data were subsequently decimated to a sampling frequency
of 20 MHz to reduce memory demands. A Hilbert transfor-
mation was then performed on the rf data to yield the in-

phase and quadrature component in y�i�. A sparse set of data
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is emulated by inserting zeros for missing data.
The result of the processing is shown in Fig. 1. A refer-

ence spectrogram is shown in the top graph. It is calculated
by

P̂y�f� =
1

Nr
�
j=0

Nr−1 � 1

N
�
i=0

N−1
1

2

1 − cos
 2�i

i + 1
��y�j,i�

�exp�− j2�fi/fprf��2

, �23�

where the data are weighted by a Hanning window, Fourier

FIG. 4. Randomly sampled spectro-
grams using different ratios between
B-mode and velocity emissions. Pf de-
notes the relative time spent on veloc-
ity emissions. The top graph shows the
normal spectrogram when using all
data. The other graphs show results
when reducing the time spent on ve-
locity emissions using random sam-
pling.
transformed, and averaged over the range gate duration Nr. A
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spectogram without averaging of rf samples is also shown in
the top graph. It is clearly shown how the rf averaging re-
duces the standard deviation of the estimate and makes it
more smooth. The lower graph also shows two spectrograms
calculated using the autocorrelation method. The blue line
shows the result, when the full data sequence is available.
The auto spectrogram is calculated using �14�, where the
autocorrelation function is averaged over a range gate dura-
tion of two pulse lengths to emulate the function of a
matched filter on the data. A symmetric Blackman window
weighted the data across pulse emissions and a rectangular
window in the axial direction. Echo canceling is performed
using �16� on the sparse data set. A Blackman window was
multiplied onto the autocorrelation function before the power
spectrum was found. The estimate is very close to the direct
spectral estimate, with roughly the same standard deviation
of the estimates. The red curve shows the result from using a
2:1 �v v b� sequence, with two velocity emissions and one
B-mode emission. The velocity spectrum is accurately esti-
mated, but the noise from positive velocities has been in-
creased from roughly −55 dB to around −30 dB. It is thus
possible to use the method for images with a dynamics
range of roughly 30 dB. The level will depend on the
sparseness of the sequence, and the level will in general
be increased with increasing sparseness as shown in the
following plots.

In Fig. 2 the process is repeated continuously and the
spectra are displayed as a gray-scale image as a function of
time and velocity. The display has been compressed to a
dynamic range of 40 dB, and the spectrum is calculated for
256 samples for every 2.1 ms. It can be seen that the new
method yields a spectrum closely corresponding to the tradi-
tional method.

In Fig. 3 the top graph shows the result from using 25%
of the time on B-mode acquisitions �v v v B sequence�,
where every fourth received signal was replaced by zeros.
The autocorrelation estimate was calculated as described
above. It can be seen that a slightly more smooth spectrum is
found, although 25% of the data is missing. In the next graph
33% of the time is spend on B-mode acquisition �v v b se-
quence�, and then 50% of the time �v b v v b b sequence� in
the next graph. The last sequence can also be used for inter-
leaving two auto spectrograms in different directions with
full velocity range. The noise in the spectrograms is progres-
sively increased, when more time is spent on B-mode acqui-
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sition, but only for the last plot is the noise becoming sig-
nificant, especially at the systolic phase in the cardiac cycle.
For the v v b sequence 33% of the time can be used for
B-mode imaging and 0.33fprf=0.33·15·103=4950 lines/s
can be acquired for B-mode imaging. This corresponds to
24 images/s consisting of 200 lines, which is a normal
B-mode frame rate. The pulse repetition frequency must be
reduced to 5 kHz if imaging is performed to a depth of
15 cm. The B-mode frame rate is then reduced to 8 Hz,
which in many applications is still acceptable. The last graph
in Fig. 3 shows a longer sequence of velocity emissions and
three B-mode emissions, so that 33% of the time is spent on
B-mode imaging. This sequence can be used to make small
blocks of B-mode emissions and reduce the influence be-
tween B-mode and velocity emissions. The spectrum at peak
systole, however, gets significantly more blurred and this
might preclude the automatic detection of peak velocity or
other derived quantities from the spectrum.

Figure 4 shows the employment of full random sampling
as described in Sec. II B using �11�. The top graph is the
reference spectrogram made using �23� and the second graph
uses random sampling with Pf =0.9. Ten percent of the time
is thus used for B-mode emissions. The next graph uses 20%
and the last 40%. Again, a progressive increase in the
amount of noise is seen with an increase in time spent on
B-mode imaging, and this makes the last case with Pf =0.6
unacceptable. Little noise is seen for Pf =0.9, and here
PBfprf=0.1·15·103=1500 lines/s are acquired for the
B-mode images. This corresponds to 15 images/s consisting
of 100 lines, which is sufficient to follow fairly rapid tissue
motion.

A. Carotid artery with strong tissue motion

The previous section did not include a strong tissue mo-
tion, and it is easy here to remove the stationary component
just by subtracting the mean value of the input signal for a
given depth. To include a significant, time-varying tissue
component, a simulated example for the carotid artery with a
strong tissue motion is shown in this section. The tissue mo-
tion is derived from the pulsating flow described by the
Womersley theory. It is calculated as the derivative of the

FIG. 5. Velocity of the tissue signal in
the radial direction at the edge of the
simulated carotid artery.
ørgen Arendt Jensen: Spectral velocity estimation using sparse data



blood velocity at a radial position of r=0.95R, where R is the
radius of the vessel. The tissue velocity v�t� is calculated as

v�t,� = �
m=1

�

kt	�Vm��
m�0.95,�m��cos�m	t − �m

+ 
m�0.95,�m�� ,


m�r/R,�m� =
��J0��m� − ��J0�r/R�m�

��J0��m� − 2J1��m�
,

�24�

m�r/R,�m� = � 
�r/R,�m� ,

�m = j3/2R� �

�
	m,

where Jn�x� is the nth-order Bessel function, �
�r /R ,�m�
denotes the angle of the complex function 
, and �
� denotes
its amplitude. The function 
 is dependent on radial position
in the vessel, angular frequency, and fluid properties.5,21 The
variables Vm and �m are the amplitude and phase, respec-
tively, of the Fourier components describing the pulsating
flow as given in Refs. 5 and 21. The constant kt scales the
tissue velocity to lie in the range of mm/s as measured in
Ref. 22. The tissue velocity in the radial direction at the
vessel boundary is shown in Fig. 5. The peak velocity is
chosen to be higher than normally encountered in the patient
�30 mm/s� to show a worst-case example. The tissue scatter-

TABLE II. Standard parameters for carotid flow simulation.

Radius of vessel R 6 mm
Distance to vessel center Zves 40 mm
Angles between beam and flow � 60°
Velocity scaling factor kt 0.001
Decay factor �t 2 mm
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ers are moved with the calculated velocity at the vessel edge
and the motion is then exponentially attenuated in the radial
direction, so that the motion gets progressively smaller fur-
ther away from the vessel. The tissue velocity as a function
of radial distance is given as

vt�t,rt� = v�t�exp�− �rt − R�/�t� , �25�

where rt is the radius from the vessel center, R is the vessel
radius, and �t is the decay constant. The Fourier components
Vm and �m for the velocity profile are taken from Ref. 23 and
the other parameters are given in Table II. The scattering of
the tissue is assumed to be 40 dB stronger than the blood
scatterers.

The spectrograms obtained for this data are shown in
Fig. 6. The top graph shows the spectrogram when using
mean subtraction for echo canceling as given by �16�. The
two lower graphs use a third-order polynomial fit as de-
scribed by �18�. All components below 120 Hz in the spec-
trum have been set to zero before display.

It can be seen that a satisfactory spectrum can be ob-
tained, although the data contain a significant stationary
component. The polynomial canceling gives a slightly better
suppressed stationary signal, and the method is therefore bet-
ter suited for strong tissue signals. There is still a small sta-
tionary component present, but this can be removed in the
frequency domain. The spectrogram in the lowest graph can
be used for either a high frame rate B-mode system or it can
be used for having two simultaneous spectral measurements
at the same time, so that, e.g., the velocity distribution before
and after a stenosis can be evaluated.

IV. AUDIO GENERATION EXAMPLE

The audio signals for the examples in the last section
was generated using the method described in Sec. II E and
the examples are stored on the EPAPS website

FIG. 6. Spectrograms for the carotid
artery with tissue motion. The top
graph shows the spectrogram when us-
ing mean subtraction for echo cancel-
ing and the two lower graphs use a
third-order polynomial fit.
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�http://www.aip.org/pubservs/epaps.html�.24 The reference
signal generated from all data is stored in the file named
reference�audio.wav. The sound generated using the auto
spectrogram and the full data is in auto�full.wav. To reduce
noise all components in the spectrum that have an amplitude
less than 2% of the spectrum peak amplitude are set to zero.
One can hear that the two files are nearly indistinguishable.
Sound files for the sparse sequences are stored in the files
auto�bd�1�3.wav, auto�bd�1�2.wav, and auto�bd�3�3.wav,
where bd�1�2 denotes the v v B sequence with two velocity
emissions and one B-mode emission. The bd�1�3 is nearly
indistinguishable from the reference file, whereas the bd�1�2
and bd�3�3 files contain progressively more noise. The ran-
dom sampling files are contained in files named
auto�random�pb�X�X.wav, where pb�X�X denotes the fac-
tional time spent on B-mode imaging. Files are found for the
fractions 0.1, 0.2, and 0.4. The 0.1 file is nearly indistin-
guishable from the reference file, whereas the other two files
contain progressively more noise. The noise seems more
prominent than for the deterministic sampling sequences for
the same amount of time spent on B-mode acquisitions.
Other ways of reconstructing the audio signal might change
this.

V. CONCLUSION

A method for preserving the full velocity range in du-
plex ultrasound systems has been presented. The method
samples both velocity and B-mode emissions interleaved in
either a deterministic or random order and the full velocity
spectrum can be determined by estimating the autocorrela-
tion function from the sparse data set. The full velocity range
can be preserved, if consecutive velocity emissions are per-
formed at some point in the sequence. The accuracy of the
estimated spectrum and the noise in it is determined from the
fraction of time spent on velocity emissions. A higher frac-
tion gives a better estimate, but also a lower frame rate for
the B-mode image. It has also been shown how the audio
data can be recovered from the sparse sequence of data.
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