Introduction to MRI

Jens E. Wilhjelm, Lars G. Hanson, Jonas Henriksen & Markus Nowak Lonsdale

Department of Electrical Engineering, Technical University of Denmark Danish Research Center for Magnetic Resonance, Hvidovre hospital Bispebjerg Hospital, Department of nuclear medicine

Contents

- ►A soft compass as an analogy
- Compass needles on a table
- The spin of the hydrogen nucleus
- Transmitted and received signal
- Imaging (spatial information)
- ► The MR scanner

18 compasses on a table Comparison to MRI						
Each compass corresponds to an atomic nucleus, but not all nuclei are magnetic. The most important by far is hydrogen nuclei (protons) primarily found in water in the body.						
(all other have too short relaxation times to allow detection).						
Bo						13

Vibration versus precession

Compasses: When excited, it will vibrate around north in a plane:

Hydrogen nucleus: When excited, it will precess in a cone (da: kegle) around north:

The difference is caused by the rotation of the nucleus around their own axis, e.g. gyroscope

14

The spin of the hydrogen nucleus By transmitting a short tone burst at the Larmor frequency, $f_0 = \gamma B_0$ the spin can be rotated. $\gamma = 42.58$ MHz/T for the hydrogen nucleus. For $B_0 = 1.5$ T, $f_0 = 63$ MHz.

12-09-13

Imaging How to get spatial information?

The only signal we have available is the *received* (*decaying*) signal.

How to get spatial information?

- Amplitude
- Decay
- Phase
- Frequency

The MR scanner What is needed?

The principal components of an MR scanner:

- Strong (super conducting) magnet for generation of B_0 field
- Gradient coils for generating spatial variations in B_0 field and thus Larmor frequency
- Coil for emitting radio waves at the Larmor frequency
- Same coil can be used for listening to the radio waves generated by the hydrogen nucleus