Welcome to 22481 Introduction to medical imaging

Jens E. Wilhjelmº Markus Nowak Lonsdale ${ }^{1}$, \& Lars G. Hanson² with assistance by Alberte KJ Jørgensen ${ }^{\circ}$ \& Cecilie R Hvass ${ }^{\circ}$

${ }^{\circ}$ Biomedical Instrumentation, ${ }^{2}$ Center for Magnetic Resonance Department of Health Technology
${ }^{1}$ Department of nuclear medicine, Bispebjerg Hospital

- Medical imaging and course objectives
\sim The plot
\sim Format of the course
- COVID-19
~SIS
\approx This afternoon
\sim Medical imaging and course objectives
\sim The plot
\sim Format of the course
- COVID-19
\sim SIS
\approx This afternoon

What is medical imaging?

Tomographic (tomo = slice) images of living tissue Projection (or shadow) images of living tissue

What does the images show?

- Structure or anatomy:
- Organs (lungs, heart, liver, bones, blood vessels, etc)
-Functionality:
- Blood flow (occlusion in vessels, perfusion, etc)

What does medical imaging reveal?

- A broken bone
- Cancer
- Occlusion of blood vessels (Atherosclerosis)
- Heart (dis)functionality
- Muscle (dis)functionality
- Pregnancy follow-up
- Brain function
- and much more......

Imaging modalities

- Sound:
-X-ray:
-
-

-Radioactive tracers (Nuclear medicine):
-Radio waves:

Course objectives

In short:

- Understand X-ray, CT, PET, US and MRI
- Be able to work with real images in MATLAB
- Do laboratory work (?)
- Do independent and team-wise project work
-Write an impressive report
\sim Medical imaging and course objectives
\sim The plot
\sim Format of the course
- COVID-19
\sim SIS
\approx This afternoon

Looking for the unknown

(Photo removed)

An image says a thousand words, but you need to know the words

(Photo removed)

The phantoms

(Photo removed)

Tissue in agar block

Phantom number in binary
Tube for radioactive tracer

Phantom number
\sim Medical imaging and course objectives
\sim The plot
\sim Format of the course

- COVID-19
\sim SIS
\approx This afternoon

The main flow of the course

- You will get:
- A photograph of the phantom surface
- Medical imaged from hospital(s) and DTU
- Photograps of sliced tissue to make a reference
- You will:
- Maybe do some home experiments
- Do some image handling, processing and analysis
- Study the physics of the imaging modalities
- Make a final report on the above and based on 4 assignments
(Photo removed)

The time line

Lectures etc
13-14:30

Data recording \& analysis
14:30-17:00 and home
Top photo
MRI
X-ray
CT \&
PET
US
Slicing

Assignments
Home
0
1

2

Next Thursday

Next module at Frederiksberg hospital:

- Planar X-ray and MRI
- Work on Assignment A2

Which objects to identify?

Which objects to identify?

All things within the limit of the acrylic box

The main flow of the course

Study the imaging techniques!!!

(Photo removed)

Format of the course: Homepage

courses.healthtechnology.dtu.dk/22481

(how to nagivate in these pages)

Format of the course: The plan

We do not have "grupperegning". We have project work!
So all rehearsal for the exam is on your own!

Language

- Normally English lectures
- All written material is in English
- During project work, guidance is in Danish/English
- Report language is your choice
- Please consider writing assignments 1 to 4 in English

The Web Book of Medical Imaging

Peer-review

Set-up:

- Assignments 1 and 2 are individual and will be peer reviewed.
- Assignments 3 and 4 are team-wise and will be reviewed by TAs.

Procedure for Assignment 1:

- All students opload their reports
- Each report is then sent to three different students:

1. Each student have to use a scoring sheet (Rubric) to score each of the three reports
2. All reviews are meant to be double-blinded so:

- No name in text, in properties nor in file name

3. I will oversee the entire process
4. Problems in Learn or CampusNet (Inside):

- Please ask TAs to help.
- Pease document these!

Report writing

- Reading and writing reports have to be to seperate processes.
- If citing text, there is only one way: In quotes (that is: "bla bla") with reference immediately after the end-quote. Otherwise, it will be considered plagarism and treated as such!
-When does the work start?

Report writing

- Reading and writing reports have to be to seperate processes.
- If citing text, there is only one way: In quotes (that is: "bla bla") with reference immediately after the end-quote. Otherwise, it will be considered plagarism and treated as such!
-When does the work start? In about an hour!

Exam

Type:

- 24 problems MC exam lasting 2 hours (in English)
- Designed so that remembering how to solve a problem does not help much. The process of leaning is important!
- Exam problems and solutions for 5 previous years are available.
\sim Medical imaging and course objectives
\sim The plot
\sim Format of the course
- COVID-19
\sim SIS
\approx This afternoon
\sim Medical imaging and course objectives
\sim The plot
\sim Format of the course
- COVID-19
\sim SIS
\approx This afternoon

COVID-19

Follow general rules
Access to kitchen - but keep nice and tidy, please
\sim Medical imaging and course objectives
\sim The plot
\sim Format of the course

- COVID-19
- SIS
\approx This afternoon

The SIS toolbox

 (self-contained image structure)
SIS: zoom on 2D example

SIS: zoom on 2D example

SIS: zoom on 2D example

SIS: zoom on 2D example

SIS: zoom on 2D example

01234

SIS: zoom on 2D example

distance in mm

SIS: zoom on 2D example

Data.Images

distance in mm

Data.Axes(2).Axis

SIS: zoom on 2D example

Data.Images

Data.Axes(2).Axis

SIS: zoom on 2D example

Data.Images

Data.Axes(2).Axis

The SIS structure

Main fields: Data.Images: [100x200x50 double]
Data.ImageType: 'intensity'
Data.Axes: [1x3 struct]
Data.ImagesLabel: 'Magnitude'
Data.ImagesSymbol: 'HV'
Data.ImagesUnit: 'HU'
Data.Date: 7.3329e+005
Data.Object: 'Phantom 1'
Data.Operator: 'mnl'
Data.Where: 'Bispebjerg Hospital'
Data.ScannerType: 'CT'
Data.Settings: (e.g. DICOM header)

SIS: 3D example

SIS: 3D example

SIS: 3D example

SIS: 3D example

SIS: 3D example

Data.Images(1, ,)

SIS: 3D example

Data.Images(1, 2,)

SIS: 3D example

Data.Images(1, 2, 3)

* By sis_zoom
$\longrightarrow 2$

SIS: 3D example

(3) is fixed for this image

Data.Images(1, 2, 3)

* By sis_zoom
$\longrightarrow 2$

SIS: 3D example

1 is fixed for this image

Data.Images(1, 2, 3) 2

SIS: 3D example

1 is fixed for this image

Data.Images(1, 2, 3)

SIS: 3D example

Dataln.Images is 100 by 50 by 25

DataOut = sis_zoom(Dataln, [45 1 1], [45 50 25], 'iii')
 output
 input
 start
 stop
 mode

SIS: 3D example

Dataln.Images is

 100 by 50 by 25$\underset{\text { output }}{\text { DataOUt }}=$ sis_zoom(Dataln, $\left[\begin{array}{cc}45 & 1 \\ \text { start }\end{array}\right.$ 1], [45 $\left.\underset{\text { stop }}{50} 25\right]$, 'iii')

DataOut.Images is:
1 by 50 by 25 which is changed to 50 by 25
Dimension 1 disappears
Dimension 2 becomes dimension 1
Dimension 3 becomes dimension 2
(50 by 25 can be changed to 25 by 50 via sis_reorder)

SIS: 3D example

Dataln.Images is

 100 by 50 by 25DataOut = sis_zoom(Dataln, [45 1 1], [45 50 25], 'iii')

output

input
start
stop
mode

DataOut.Images is:
1 by 50 by 25 which is changed to 50 by 25
Dimension 1 disappears
Dimension 2 becomes dimension 1
Dimension 3 becomes dimension 2
(50 by 25 can be changed to 25 by 50 via sis_reorder)

SIS: 3D example

Dataln.Images is

 100 by 50 by 25DataOut = sis_zoom(Dataln, [45 1 1], [45 50 25], 'iii')

output

input
start
stop
mode

DataOut.Images is:
1 by 50 by 25 which is changed to 50 by 25
Dimension 1 disappears
Dimension 2 becomes dimension 1
Dimension 3 becomes dimension 2
(50 by 25 can be changed to 25 by 50 via sis_reorder)

SIS: 3D example

Dataln.Images is

 100 by 50 by 25
output
input

DataOut.Images is:
1 by 50 by 25 which is changed to 50 by 25
Dimension 1 disappears
Dimension 2 becomes dimension 1
Dimension 3 becomes dimension 2
(50 by 25 can be changed to 25 by 50 via sis_reorder)

SIS: What do you need?

- MATLAB (ideal is 2017a, but others may also work)
- Image processing toolbox (plus more?)

Teaching assistants -how can they help?

Here you need Oraculus:
Mylmage = ones(3,3);
Mylmage $=3 *$ MyInage;
Here you might need a teaching assistant (TA): Mylmage = ones(3,3);
imagesc([1 5 6], [22 23 50], Mylmage); colorbar;
\sim Medical imaging and course objectives
\sim The plot
\sim Format of the course

- COVID-19
\sim SIS
\sim This afternoon

Møde om Kandidatuddannelsen

Torsdag, 29. September 2022 kl 17:15-19:00
 ?

This afternoon

Forming teams

You are here

$$
\begin{gathered}
349.005 \\
\text { (two phantoms at a time, } \\
\text { starting with teams } 1 \text { and 2) }
\end{gathered}
$$

Optical scanning of phantom

Jens E. Wilhjelm
349.019,025,034
(all other teams)
Treasure hunt
(see the plan)
Try examples in SIS guide

Work with data from optical scanning
(homepage)

Team establishment

(only for those not in a team)

Procedure:

- If you are a bachelor from MedTek, try to form team
- If not a bachelor from MedTek OR not forming a team with only MedTek:
~ Come to me right now
\sim Presentation round
- Forming of teams

All teams:
-Within 1 hour, submit to jwil@dtu.dk a mail with:
~Team members name and study ID
\sim Team title, if you so desire

The last slide of today

My basic philosophy:

- I hear, and I forget
- I see, and I know where to look for it later
- I write \& draw, and I remember
- I do, and I understand
and ...
- We do not teach biomedical engineering, we teach you to be a biomedical engineer

