

# Tips on working: *Report and handling data*

Jens E. Wilhjelm

(with assistance by Sofie Rahbek and Mads Fjelbro Klavsen)

Biomedical Engineering Department of Health Technology

Biomedical Engineering DTU Health Technology

© By Jens E. Wilhjelm, Department of Health Technology, DTU, Denmark. 2007-2022

 $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)}{i!}$ 



- Directories with data and programs
- Example: Top photo
- Example: PET-CT
  - Fiducial markers in CT
  - PET data
- Report
- Various



#### Suggestion of structure of m-files, documents and data





Health Technology



- Directories with data and programs
- Example: Top photo
- Example: PET-CT
  - Fiducial markers in CT
  - PET data
- Report
- Various



### A way to handle the top photo



HO 5/33



graphics and bitmapped images.



- Directories with data and programs
- Example: Top photo
- Example: PET-CT
  - Fiducial markers in CT
  - PET data
- Report
- Various



### PET - CT





BME Health Technology



#### PET - CT



Investigate voxel size in MATLAB!

BME Health Technology

#### PET - CT



load Data; % PET data from fall 2007

sis\_extract\_axis\_info(Data);

|                | Arg 1     | Arg 2     | Arg 3        |                  |
|----------------|-----------|-----------|--------------|------------------|
|                |           |           |              |                  |
| Start of axis: | 86.00000  | 40.00000  | -5.73986 mm  |                  |
| End of axis:   | 214.00000 | 210.00000 | 288.26015 mm |                  |
| Span of axis:  | 128.00000 | 170.00000 | 294.00001 mm |                  |
| Mean delta:    | 2.00000   | 2.00000   | 2.00000 mm   |                  |
| Image size:    | 65        | 86        | 148 (i.      | e.827320 voxels) |
|                |           |           |              |                  |

| Maximum value: | 32767.00000 | ?(6 voxels)      |
|----------------|-------------|------------------|
| Mean value:    | 106.62967   | ?                |
| Minimum value: | 0.0000      | ?(519344 voxels) |

"Arg" and "Dim" are used interchangeably.



- Directories with data and programs
- Example: Top photo
- Example: PET-CT
  - Fiducial markers in CT
  - PET data
- Report
- Various



BME Health Technology



#### **Fiducial markers**



By use of sis\_zoom, you should extract an image that is positioned as indicated by the red frame.

BME Health Technology



#### **Fiducial markers**



#### Phantom seen from the side





#### Phantom seen from the side





#### Phantom seen from the side







- Directories with data and programs
- Example: Top photo
- Example: PET-CT
  - Fiducial markers in CT
  - PET data
- Report
- Various



#### **Example: Visualization of PET data**





(Photo from an older scanning)

# Example: Visualization of PET data "Collapsed" volumes





Arg1: 90 to 130 mn





BME Health Technology

# Example: Visualization of PET data "Collapsed" volumes









BME Health Technology



- Directories with data and programs
- Example: Top photo
- Example: PET-CT
  - Fiducial markers in CT
  - PET data
- Report
- Various



The electrical part of the measurement system is depicted in Fig. 2. The ultrasound system consisted of a pulser/receiver (type 5072PR, Panametrics, Inc., MA) connected to a submersible transducer (to be described in Subsection 2.1). The amplified signal from the pulser/receiver was bandpass filtered to limit noise outside the useable frequency range of the particular transducer and digitized with a digital storage oscilloscope (DSO) (type 9450, LeCroy, Genève, Switzerland). The DSO was in turn connected via a general purpose interface bus (GPIB) interface to a control computer running MS Windows. By means of an RS232 interface, a 3D translation system (type 403020, Dyrbæk Technologies, Åbenrå, Denmark) was connected to this control computer as well.



BME Health Technology

The electrical part of the measurement system is depicted in Fig. 2. The ultrasound system consisted of a pulser/receiver (type 5072PR, Panametrics, Inc., MA) connected to a submersible transducer (to be described in Subsection 2.1). The amplified signal from the pulser/receiver was bandpass filtered to limit noise outside the useable frequency range of the particular transducer and digitized with a digital storage oscilloscope (DSO) (type 9450, LeCroy, Genève, Switzerland). The DSO was in turn connected via a general purpose interface bus (GPIB) interface to a control computer running MS Windows. By means of an RS232 interface, a 3D translation system (type 403020, Dyrbæk Technologies, Åbenrå, Denmark) was connected to this control computer as well.



BME Health Technology

The electrical part of the measurement system is depicted in Fig. 2. The ultrasound system consisted of a pulser/receiver (type 5072PR, Panametrics, Inc., MA) connected to a submersible transducer (to be described in Subsection 2.1). The amplified signal from the pulser/receiver was bandpass filtered to limit noise outside the useable frequency range of the particular transducer and digitized with a digital storage oscilloscope (DSO) (type 9450, LeCroy, Genève, Switzerland). The DSO was in turn connected via a general purpose interface bus (GPIB) interface to a control computer running MS Windows. By means of an RS232 interface, a 3D translation system (type 403020, Dyrbæk Technologies, Åbenrå, Denmark) was connected to this control computer as well.



BME Health Technology

The electrical part of the measurement system is depicted in Fig. 2. The ultrasound system consisted of a pulser/receiver (type 5072PR, Panametrics, Inc., MA) connected to a submersible transducer (to be described in Subsection 2.1). The amplified signal from the pulser/receiver was bandpass filtered to limit noise outside the useable frequency range of the particular transducer and digitized with a digital storage oscilloscope (DSO) (type 9450, LeCroy, Genève, Switzerland). The DSO was in turn connected via a general purpose interface bus (GPIB) interface to a control computer running MS Windows. By means of an RS232 interface, a 3D translation system (type 403020, Dyrbæk Technologies, Åbenrå, Denmark) was connected to this control computer as well.



BME Health Technology

The electrical part of the measurement system is depicted in Fig. 2. The ultrasound system consisted of a pulser/receiver (type 5072PR, Panametrics, Inc., MA) connected to a submersible transducer (to be described in Subsection 2.1). The amplified signal from the pulser/receiver was bandpass filtered to limit noise outside the useable frequency range of the particular transducer and digitized with a digital storage oscilloscope (DSO) (type 9450, LeCroy, Genève, Switzerland). The DSO was in turn connected via a general purpose interface bus (GPIB) interface to a control computer running MS Windows. By means of an RS232 interface, a 3D translation system (type 403020, Dyrbæk Technologies, Åbenrå, Denmark) was connected to this control computer as well.



BME Health Technology

The electrical part of the measurement system is depicted in Fig. 2. The ultrasound system consisted of a pulser/receiver (type 5072PR, Panametrics, Inc., MA) connected to a submersible transducer (to be described in Subsection 2.1). The amplified signal from the pulser/receiver was bandpass filtered to limit noise outside the useable frequency range of the particular transducer and digitized with a digital storage oscilloscope (DSO) (type 9450, LeCroy, Genève, Switzerland). The DSO was in turn connected via a general purpose interface bus (GPIB) interface to a control computer running MS Windows. By means of an RS232 interface, a 3D translation system (type 403020, Dyrbæk Technologies, Åbenrå, Denmark) was connected to this control computer as well.



BME Health Technology



#### **Borrowing from others**

(Photo removed)

#### Figure 1. Example of popular/unpopular behavior.

## What's "wrong" here?

- $I_{(xi)}$  Intensitet af medium (xi)  $[W/m^2]$
- $\Upsilon$  Gyromagnetisk ratio 42MHz/T for fotoner
- $\mu_m$  Lineær dæmpningskoefficient for pågældende voxel  $[m^{-1}]$
- μ Dæmpning
- μ Middelværdi
- $\lambda$  Bølgelængde [nm]
- <sup>18</sup>F Fluodeoxyglucose



#### Last, but not least...

 Write all the text yourself, or make citations with references

#### Keep

- reading the text book and
- writing your report

#### as two *seperate* tasks!

## Last, but not least...

Alternatives, that are *not* plagiarism:

- Write all the text yourself in your own words:
   → High grade, if correct.☺
- Write the text in a way that is close (but not identical) to the reference:
  - → Low grade. 😐
- Purely copy paste with citation marks and references:
  - → Very low grade. 🛞



- Directories with data and programs
- Example: Top photo
- Example: PET-CT
  - Fiducial markers in CT
  - PET data
- Report





#### **Peer review**



| Student 1 | A1 08-09-16 (s061 | ).pdf 8. september 2016 21:26 | <ul> <li>Student 14         <ul> <li>(s144 )</li> <li>Student 19<sup>(s144</sup> )</li> <li>Student 2</li></ul></li></ul> |  |
|-----------|-------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| Student 2 | Assignment_1.pdf  | 8. september 2016 22:09       | <pre>✓ (s136 ) ✓ (s144 ) ✓ (s144 )</pre>                                                                                  |  |
| Student 3 | Assignment A1.pdf | 8. september 2016 22:26       | <ul> <li>✓</li> <li>(s123 )</li> <li>✓</li> <li>(s136 )</li> <li>✓</li> <li>(s144 )</li> </ul>                            |  |

|                                | Student 14    | Student 19    | Student 2 |  |
|--------------------------------|---------------|---------------|-----------|--|
| Purpose                        | Θ             | Θ             | <b>e</b>  |  |
| Method                         | <b>e</b>      | e             | •         |  |
| Processing of image            | <del>()</del> | Θ             | •         |  |
| Axes                           | Θ             | e             | e         |  |
| Fiducial markers               | •             | Θ             | Θ         |  |
| Additional fiducial<br>markers | <b>e</b>      | <b>e</b>      | •         |  |
| Geometry                       | Θ             | e             | Θ         |  |
| Zero point                     | Θ             | <del>()</del> | •         |  |
| MATLAB code                    | e             | Θ             | Θ         |  |
|                                |               | •             | •         |  |

#### (The two figures here are from different data sets)

Se uddybende

begrundelser Se uddybende

begrundelser Se uddybende

begrundelser Se uddybende

begrundelser

Se uddybende

begrundelser

Se uddybende

begrundelser

Se uddybende

begrundelser Se uddybende

begrundelser Se uddybende

begrundelser Se uddybende begrundelser



#### draw\_fiducials\_on\_phantom;

- plot( bla)
- circle( bla)
- draw\_fiducials\_on\_phantom( Data, FiducialPoints, etc);

Δ1

- sis\_view( Data);
- plot( bla)
- circle( bla)